Please wait a minute...
Acta Phys. Chim. Sin.
CATALYSIS AND SURFACE SCIENCE     
Polymerizable Complex Synthesis of Protonated Form of Layered Perovskite K0.5La0.5Bi2Ta2O9 for Water Splitting into Hydrogen
CHEN Wei1, GAO Han-Yang1, YANG Yu1, LIN Pei-Bin1, YUAN Jian1, SHANGGUAN Wen-Feng1, SU Jia-Chun2, SUN Yang-Zhou2
1 Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;
2 CNOOC New Energy Investment Co. Ltd. Beijing 100016, P. R. China
Download:   PDF(1455KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The protonated layered perovskite oxide H1.9K0.3La0.5Bi0.1Ta2O7 (HKLBT) was prepared from K0.5La0.5Bi2Ta2O9 (KLBT) by H ion-exchange, and subsequently characterized by thermogravimetric analysis (TG-DSC), X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), and X-ray photoelectron spectroscopy (XPS). The effects of the calcining temperature on the material's photocatalytic activity were also investigated. Results showed that HKLBT with high crystalline quality could be synthesized at low temperatures and that HKLBT prepared from KLBT calcined at 900℃ exhibited the greatest photocatalytic activity, with an average water splitting hydrogen evolution rate of 236.6 μmol·h-1 in pure water. The time course of water splitting indicated HKLBT has ability to split water into hydrogen and oxygen with long-term stability.



Key wordsPhotocatalysis      Water splitting      Layered perovskite      Acid treatment     
Received: 06 July 2012      Published: 01 August 2012
MSC2000:  O643  
Fund:  

The project was supported by the National Key Basic Research and Development Program(973) (2009CN220000) and National Natural Science Foundation of China (20973110).

Cite this article:

CHEN Wei, GAO Han-Yang, YANG Yu, LIN Pei-Bin, YUAN Jian, SHANGGUAN Wen-Feng, SU Jia-Chun, SUN Yang-Zhou. Polymerizable Complex Synthesis of Protonated Form of Layered Perovskite K0.5La0.5Bi2Ta2O9 for Water Splitting into Hydrogen. Acta Phys. Chim. Sin., 2012, 28(12): 2911-2916.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201208011     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I12/2911

(1) Maeda, K.; Domen, K. J. Phys. Chem. C 2007, 111, 7851. doi: 10.1021/jp070911w
(2) Chen, X.; Shen, S.; Guo, L.; Mao, S. Chem. Rev. 2010, 110,6503. doi: 10.1021/cr1001645
(3) Li, Y. X.;Wang, J. X.; Peng, X. Q.; Lu, G. X.; Li, S. B. Int. J. Hydrog. Energy 2010, 35, 7116. doi: 10.1016/j.ijhydene.2010.02.017
(4) Shimizu, K.; Itoh, S.; Hatamachi, T.; Kodama, T.; Sato, M.;Toda, K. Chem. Mater. 2005, 17, 5161. doi: 10.1021/cm050982c
(5) Shangguan,W.; Yoshida, A. J. Mater. Sci. 2001, 36, 4989. doi: 10.1023/A:1011877414129
(6) Huang, Y.; Li, Y.;Wei, Y.; Huang, M.;Wu, J. Sol. Energy Mater. Sol. Cells 2011, 95, 1019. doi: 10.1016/j.solmat.2010.12.017
(7) Tsunoda, Y.; Shirata, M.; Sugimoto,W.; Liu, Z.; Erasaki, O.;Kuroda, K. Inorg. Chem. 2001, 40, 5768. doi: 10.1021/ic010266m
(8) Yan, S.; Huang, Q. D.; Lin, J. D.; Yuan, Y. Z.; Liao, D.W. Acta Phys. -Chim. Sin. 2011, 27, 2406. [闫石, 黄勤栋, 林敬东,袁友珠, 廖代伟. 物理化学学报, 2011, 27, 2406.] doi: 10.3866/PKU.WHXB20110929
(9) Yoshino, M.; Kakihana, M. Chem. Mater. 2002, 14, 3369.doi: 10.1021/cm0109037
(10) Kakihana, M.; Milanova, M.; Arima, M.; Okubo, T.; Yashima,M.; Yoshimura, M. J. Am. Ceram. Soc. 1996, 79, 1673. doi: 10.1111/jace.1996.79.issue-6
(11) Maeda, K.; Terashima, H.; Kase, K.; Domen, K. Appl. Catal. A: Gen. 2009, 357, 206. doi: 10.1016/j.apcata.2009.01.024
(12) Karthika, C.; Ravishankara, N.; Maglioneb, M.; Vondermuhllb,R.; Etourneaub, J.; Varmaa, K. Solid State Communications2006, 139, 268. doi: 10.1016/j.ssc.2006.06.019
(13) Li, C.; Yuan, J.; Han, B.; Shangguan,W. Int. J. Hydrog. Energy2011, 36, 4271. doi: 10.1016/j.ijhydene.2011.01.022
(14) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g
(15) Tsunoda, Y.; Sugimoto,W.; Sugahara, Y. Chem. Mater. 2003, 15,632. doi: 10.1021/cm0200893
(16) Jiang, L.;Wang, Q.; Li, C.; Yan, J.; Shangguan,W. Int. J. Hydrog. Energy 2010, 35, 7043. doi: 10.1016/j.ijhydene.2009.12.187
(17) Betley, T.;Wu, Q.; Voorhis, T.; Nocera, D. G. Inorg. Chem.2008, 47, 1849. doi: 10.1021/ic701972n
(18) Kanan, M.; Nocera, D. Science 2008, 32, 1072. doi: 10.3321/j.issn:1006-9275.2008.07.010
(19) Kiwi, J.; Morrison, C. J. Phys. Chem. 1984, 88, 6146. doi: 10.1021/j150669a018
(20) Kiwi, J.; Grätzel, M. J. Phys. Chem. 1984, 88, 1302. doi: 10.1021/j150651a012
(21) McGuire, G.; Schweitzer, K.; Carlson, T. Inorg. Chem. 1973,12, 2450. doi: 10.1021/ic50128a045
(22) Shi, R.; Lin, J.;Wang, Y.; Xu, J.; Zhu, Y. J. Phys. Chem. C 2010,114, 6472.
(23) Galenda, A.; Maria, M.; Krishnan, V.; Bertagnolli, H. Chem. Mater. 2007, 19, 2796.
(24) Chen,W.; Dong, X. F.; Chen, Z. S.; Chen, S. Z.; Lin,W. M.Acta Phys. -Chim. Sin. 2009, 25, 1107. [陈威, 董新法, 陈之善, 陈胜洲, 林维明. 物理化学学报, 2009, 25, 1107.] doi: 10.3866/PKU.WHXB20090624

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[3] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[4] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[5] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[6] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[7] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[8] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[9] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[10] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[11] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.
[12] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.
[13] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. Chim. Sin., 2016, 32(3): 737-744.
[14] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.
[15] HE Rong-An, CAO Shao-Wen, YU Jia-Guo. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2841-2870.