Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (10): 2263-2268    DOI: 10.3866/PKU.WHXB201208171
Nanocomposite Cathode Catalyst with High Methanol Tolerance and Durability
ZHENG Ning, ZHU Chun-Mei, SUN Bin, SHI Zu-Jin, LIU Yan, WANG Yuan
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download:   PDF(1714KB) Export: BibTeX | EndNote (RIS)      


We report the preparation, characterization and elelctrocatalytic properties of a novel nanocomposite cathode catalyst (TiOPc-Pt/NSWCNH) which is assembled using Pt nanoclusters, TiOPc nanocrystal, and nitrogen-doped single walled carbon nanohorns (NSWCNHs) as building blocks. TiOPc-Pt/NSWCNH is characterized by inserting most of the Pt nanoparticles in nano-networks formed by stacking of NSWCNHs, and contacting of a part of the Pt nanoparticles with TiOPc nanocrystals. TiOPc-Pt/NSWCNH exhibits high electrocatalytic activity, excellent selectivity and durability for oxygen reduction reaction (ORR) in the presence of methanol. In an O2-saturated HClO4 aqueous solution containing methanol (0.5 mol·L-1), the onset potential over the TiOPc-Pt/NSWCNH catalyst shifted by more than 260 mV toward positive relative to that over a commercial Pt/C-JM catalyst. The mass activity and specific activity for ORR over TiOPc-Pt/NSWCNH at 0.85 V (versus a reversible hydrogen electrode (RHE)) was 83.5 A·g-1 and 0.294 mA·cm-2, respectively, which were much higher than those of Pt/C-JM. Cyclic voltammetry accelerated aging tests (0.6-1.0 V for 15000 cycles) in an O2-saturated HClO4 aqueous solution containing methanol revealed that TiOPc-Pt/NSWCNH possessed a higher durability compared to TiOPc-Pt/C. The high methanol tolerance of TiOPc-Pt/NCNH may be mainly derived from the electron transfer from TiOPc nanocrystals to Pt nanoparticles. The nano-network and the high graphitization degree of NSWCNHs are responsible for the excellent durability of TiOPc-Pt/NSWCNH.

Key wordsNanocomposite catalyst      Nitrogen-doped carbon nanohorns      Phthalocyanine      Durability      Methanol tolerance      Cathode of direct methanol fuel cells     
Received: 09 July 2012      Published: 17 August 2012
MSC2000:  O646.54  

The project was supported by the National Natural Science Foundation of China (20803001, 20973003, 51121091, 21133001), and National Key Basic Research Special Foundation of China (2011CB808702).

Cite this article:

ZHENG Ning, ZHU Chun-Mei, SUN Bin, SHI Zu-Jin, LIU Yan, WANG Yuan. Nanocomposite Cathode Catalyst with High Methanol Tolerance and Durability. Acta Phys. -Chim. Sin., 2012, 28(10): 2263-2268.

URL:     OR

(1) Shao, M. H.; Sasaki, K.; Adzic, R. R. J. Am. Chem. Soc. 2006,128, 3526. doi: 10.1021/ja060167d
(2) Liu, Y.; Zheng, N.; Chao,W.; Liu, H.;Wang, Y. Electrochim. Acta 2010, 55, 5617. doi: 10.1016/j.electacta.2010.04.092
(3) Li,W. Z.; Zhou,W. J.; Li, H. Q.; Zhou, Z. H.; Zhou, B.; Sun, G.Q.; Xin, Q. Electrochim. Acta 2004, 49, 1045. doi: 10.1016/j.electacta.2003.10.015
(4) Gao, M. R.; Gao, Q.; Jiang, J.; Cui, C. H.; Yao,W. T.; Yu, S. H.Angew. Chem. Int. Edit. 2011, 50, 4905. doi: 10.1002/anie.v50.21
(5) Wang,W. M.; Huang, Q. H.; Liu, J. Y.; Zou, Z. Q.; Zhao, M. Y.;Vogel,W.; Yang, H. J. Catal. 2009, 266, 156. doi: 10.1016/j.jcat.2009.06.004
(6) Liu, S. H.; Zheng, F. S.;Wu, J. R. Appl. Catal. B: Environ.2011, 81, 108.
(7) Wen, Z. H.; Liu, J.; Li, J. H. Adv. Mater. 2008, 20, 745.
(8) Jasinski, R. Nature 1964, 201, 1212. doi: 10.1038/2011212a0
(9) Vante, N. A.; Tributsch, H. Nature 1986, 323, 431. doi: 10.1038/323431a0
(10) Liu, Y.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K.J. Electrochem. Soc. 2007, 154, B664.
(11) Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A. J.; Zhang,W. M.; Zhu, Z. H.; Smith, S. C.; Jaroniec, M.; Lu, G. Q.; Qiao,S. Z. J. Am. Chem. Soc. 2011, 133, 20116. doi: 10.1021/ja209206c
(12) Li, X. G.; Han, F.; Xing,W.; Tang, Y.W.; Lu, T. H. Acta Phys. -Chim. Sin. 2003, 19, 380. [李旭光, 韩飞, 邢巍,唐亚文, 陆天虹. 物理化学学报, 2003, 19, 380.] doi: 10.3866/PKU.WHXB20030422
(13) Kwon, K. Y. J.; Sa, Y. J.; Cheon, J. Y.; Joo, S. H. Langmuir2012, 28, 991. doi: 10.1021/la204130e
(14) Zheng, N.; Liu, Y.;Wang, Y. Chem. Res. Chin. Univ. 2011, 32,748.
(15) Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0
(16) Yoshitake, T.; Shimakawa,Y.; Kuroshima, S.; Kimura, H.;Ichihashi, T.; Kubo, Y.; Kasuya, D.; Takahashi, K.; Kokai, F.;Yudasaka, M.; Iijima, S. Physica B: Condensed Matter 2002,323, 124. doi: 10.1016/S0921-4526(02)00871-2
(17) Kosaka, M.; Kuroshima, S.; Kobayashi, K.; Sekino, S.;Ichihashi, T.; Nakamura, S.; Yoshitake, T.; Kubo, Y. J. J. Phys. Chem. C 2009, 113, 8660.
(18) Zhou, Y. K.; Neyerlin, K.; Olson,T. S.; Pylypenko, S.; Bult, J.;Dinh, H. N.; Gennett, T.; Shao, Z. P.; O'Hayre, R. Energy Environ. Sci. 2010, 3, 1437. doi: 10.1039/c003710a
(19) Ma, G. X.; Jia, R. G.; Zhao, J. H.;Wang, Z. J.; Song, C.; Jia, S.P.; Zhu, Z. P. J. Phys. Chem. C 2011, 115, 25148. doi: 10.1021/jp208257r
(20) Zhao, Y. C.; Zhan, L.; Tian, J. N.; Nie, S. L.; Ning, Z. Acta Phys. -Chim. Sin. 2011, 27, 91. [赵彦春, 占璐, 田建袅,聂素连, 宁珍. 物理化学学报, 2011, 27, 91.] doi: 10.3866/PKU.WHXB20110128
(21) Zhang, L.W.; Zheng, N.; Gao, A.; Zhu, C. M.;Wang, Z. Y.;Wang, Y.; Shi, Z. J.; Liu, Y. J. Power Sources doi: 10.1016/j.jpowsour.2012.08.009.
(22) Li, N.;Wang, Z. Y.; Zhao, K. K.; Shi, Z. J.; Gu, Z. N.; Xu, S. K.Carbon 2010, 48, 1580. doi: 10.1016/j.carbon.2009.12.055
(23) Liang, D. J.; Peng,W. L.;Wang, Y. Adv. Mater. doi: 10.1002/adma.201201720
(24) Wang, Y.; Deng, K.; Gui, L. L.; Tang, Y. Q.; Zhou, J.W.; Cai, L.Y.; Qiu, J. B.; Ren, D. Y.;Wang, Y. Q. J. Colloid Interface Sci.1999, 213, 270. doi: 10.1006/jcis.1999.6132
(25) Wang, Y.; Ren, J.W.; Deng, K.; Gui, L. L.; Tang, Y. Q. Chem. Mater. 2000, 12, 1622. doi: 10.1021/cm0000853
(26) Pylypenko, S.; Queen, A.; Olson, T. S.; Dameron, A.; O'Neill,K.; Neyerlin, K.; Pivovar, B.; Dinh, H. N.; Ginley, D. S.;Gennett, T. J. Phys. Chem. C 2011, 115, 13676. doi: 10.1021/jp112236n
(27) Enokida, T.; Hirohashi, R.; Nakamura, T. J. Imaging Sci. 1990,34, 234.
(28) Sheppard, S. A.; Campbell, S. A.; Smith, J. R.; Lloyd, G.W.;Ralph, T. R.;Walsh, F. C. Analyst 1998, 123, 1923. doi: 10.1039/a803310b
(29) Michaelson, H. B. J. Appl. Phys. 1977, 48, 4729. doi: 10.1063/1.323539
(30) Ma, Y.;Wen, Y. Q.;Wang, J. X.; Shang, Y. L.; Du, S. S.; Pan, L.D.; Li, G.; Yang, L. M.; Gao, H. J.; Song, Y. L. J. Phys. Chem. C2009, 113, 8548.

[1] Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.
[2] Zhan-Guo LI,Yu-Ting ZHANG,Qiang XIE,Heng-Li LI,Li-Jing SUN,Xiao-Feng SONG,Li-Juan WANG. NO2 Sensors Based on p-6P Heterogametic Induction Growth of Copper Phthalocyanine Thin Films[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 1005-1011.
[3] Yang LI,Jia-Dao WANG,Li-Ning FAN,Da-Rong CHEN. Feasible Fabrication of a Durable Superhydrophobic Coating on Polyester Fabrics for Oil-Water Separation[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 990-996.
[4] CHEN Jun, WANG Shuang-Qing, YANG Guo-Qiang. Nonlinear Optical Limiting Properties of Organic Metal Phthalocyanine Compounds[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 595-611.
[5] DAI Xian-Feng, ZHEN Ming-Fu, XU Pan, SHI Jing-Jing, MA Cheng-Yu, QIAO Jin-Li. Electrochemical Behavior of Pyridine-Doped Carbon-Supported Co-Phthalocyanine (Py-CoPc/C) for Oxygen Reduction Reaction and Its Application to Fuel Cell[J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1753-1761.
[6] SUN Xiao-Ran, LI Guang-Yue, XIA Ding-Guo, ZHANG Li-Mei, LI Fan. Oxygen-Reduction Reaction of Pyromellitimide-Bridged Polyphthalocyanine Fe(II)[J]. Acta Phys. -Chim. Sin., 2013, 29(07): 1461-1466.
[7] CAO Chun-Hui, LIN Rui, ZHAO Tian-Tian, HUANG Zhen, MA Jian-Xin. Preparation and Characterization of Core-Shell Co@Pt/C Catalysts for Fuel Cell[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 95-101.
[8] ZHENG Hua-Rong, WANG Xiao-Wei, LIN Xia-Hui, GENG Qiang, CHEN Xun, DAI Wen-Xin, WANG Xu-Xu. Promoted Effect of Polyethylene Glycol on the Photo-Induced Hydrophilicity of TiO2 Films[J]. Acta Phys. -Chim. Sin., 2012, 28(07): 1764-1770.
[9] LIU Yun-Long, WANG Wen-Jun, GAO Xue-Xi, XU Jian-Hua. Second Harmonic Generation Properties of Centrosymmetric Bisphthalocyaninato Thulium in Langmuir-Blodgett Films[J]. Acta Phys. -Chim. Sin., 2011, 27(08): 1985-1989.
[10] BAI Qing-Long, ZHANG Chun-Hua, CHENG Chuan-Hui, LI Wan-Cheng, SHEN Ren-Sheng, DU Guo-Tong. Photoluminescence and Electroluminescence of the Novel Soluble Zinc Phthalocyanine[J]. Acta Phys. -Chim. Sin., 2011, 27(05): 1195-1200.
[11] OGUNSIPE Abimbola, NYOKONG Tebello. Solvent Effects on the Photophysicochemical Properties of Tetra(tert-butylphenoxy)phthalocyaninato Zinc(II)[J]. Acta Phys. -Chim. Sin., 2011, 27(05): 1045-1052.
[12] GAO Guan-Dao, LI Jing, ZHANG Ai-Yong, AN Xiao-Hong, ZHOU Lei. Optimizational Preparation and Mesoporous Material Characteristics of a Novel Biomimetic Photocatalyst and Its Application to the Photocatalytic Degradation of Phenol[J]. Acta Phys. -Chim. Sin., 2010, 26(09): 2437-2442.
[13] XIAO Rong-Ping, KE Mei-Rong, HUANG Jian-Dong, ZHANG Han-Hui. Preparation and Spectroscopic Properties of Covalent Albumin Conjugates of Zinc Phthalocyanines Tetrasubstituted with Carboxyl Moieties[J]. Acta Phys. -Chim. Sin., 2010, 26(08): 2274-2280.
[14] WANG Yong-Feng, ZHANG Xin-Ran, YE Ying-Chun, LIANG De-Jian, WANG Yuan, WU Kai. Self-Assemblies of Oxovanadium Phthalocyanine Molecules and Nanoclusters on Highly Oriented Pyrolytic Graphite[J]. Acta Phys. -Chim. Sin., 2010, 26(04): 933-938.
[15] CHEN Ri-Yao, CHEN Zhen, ZHENG Xi, CHEN Xiao, HUANG Cai-Xia. Preparation and Characterization of CoPc(COOH)8-SA/mCS Bipolar Membranes[J]. Acta Phys. -Chim. Sin., 2009, 25(12): 2438-2444.