Please wait a minute...
Acta Phys. Chim. Sin.
PHYSICAL CHEMISTRY OF MATERIALS     
Preparation of Nitrogen-Doped Graphene and Its Supercapacitive Properties
SU Peng1, GUO Hui-Lin1, PENG San1, NING Sheng-Ke2
1 Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, P. R. China;
2 Industry Training Center, Xi’an Technological University, Xi’an 710021, P. R. China
Download:   PDF(2472KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nitrogen-doped graphene was synthesized by the hydrothermal method with graphene oxide (GO) as the raw material and urea as the reducing-doping agent. The morphology, structure, and components of the as-produced graphene were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption-desorption analysis, and electrical conductivity measurements. The results showed that nitrogen was doped into the graphene plane at the same time as the GO sheets were reduced, and the nitrogen content was between 5.47%-7.56% (atomic fraction). In addition, the electrochemical performance of the graphene was tested. Nitrogen-doped graphene with a nitrogen content of 7.50% showed excellent capacitive behavior and long cycle life. The first cycle specific discharge capacitance for the material was 184.5 F·g-1 when cycled at 3 A·g-1, and 12.4% losses were found after 1200 cycles in anaqueous electrolyte of 6 mol·L-1 KOH.



Key wordsGraphene      Nitrogen doped      Urea      Hydrothermal method      Supercapacitor     
Received: 29 May 2012      Published: 22 August 2012
MSC2000:  O646  
Fund:  

The project was supported by the Scientific Research Foundation of Education Bureau of Shaanxi Province, China (09JK747).

Cite this article:

SU Peng, GUO Hui-Lin, PENG San, NING Sheng-Ke. Preparation of Nitrogen-Doped Graphene and Its Supercapacitive Properties. Acta Phys. Chim. Sin., 2012, 28(11): 2745-2753.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201208221     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I11/2745

(1) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157,11. doi: 10.1016/j.jpowsour.2006.02.065
(2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.Science 2004, 306, 666. doi: 10.1126/science.1102896
(3) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849
(4) Katsnelson, M. I. Mater. Today 2007, 10 (1-2), 20.
(5) Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4, 217. doi: 10.1038/nnano.2009.58
(6) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.] doi: 10.3866/PKU.WHXB20100812
(7) Wei, D. C.; Liu, Y. Q.;Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu,G. Nano Lett. 2009, 9, 1752. doi: 10.1021/nl803279t
(8) Qu, L. T.; Liu, Y.; Baek, J.-B.; Dai, L. M. ACS Nano 2010, 4,1321. doi: 10.1021/nn901850u
(9) Meyer, J. C.; Kurasch, S.; Park, H. J.; Skakalova, V.; Kunzel,D.; Groβ, A.; Chuvilin A.; Algara-Siller, G.; Roth, S.; Iwasaki,T.; Starke, U.; Smet, J. H.; Kaiser, U. Nat. Mater. 2011, 10, 209.doi: 10.1038/nmat2941
(10) Jeong, H. M.; Lee, J.W.; Shin,W. H.; Choi, Y. J.; Shin, H. J.;Kang, J. K.; Choi, J.W. Nano Lett. 2011, 11, 2472. doi: 10.1021/nl2009058
(11) Shao, Y. Y.; Zhang, S.; Engelhard, M. H.; Li, G. S.; Shao, G. C.;Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. H. J. Mater. Chem. 2010,20, 7491. doi: 10.1039/c0jm00782j
(12) Wang, Y.; Shao, Y. Y; Matson, D.W.; Li, J. H.; Lin, Y. H. ACS Nano 2010, 4, 1790. doi: 10.1021/nn100315s
(13) Li, N.;Wang, Z. Y.; Zhao, K. K.; Shi, Z. J.; Gu, Z. N.; Xu, S. K.Carbon 2010, 48, 255. doi: 10.1016/j.carbon.2009.09.013
(14) Panchokarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.;Govindaraj, A.; Krisnamurthy, H. R.;Waghmare, U. V.; Rao, C.N. R. Adv. Mater. 2009, 21, 4726. doi: 10.1002/adma.200901335
(15) Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.;Weber, P. K.;Wang,H. L.; Guo, J.; Dai, H. J. Science 2009, 324, 768. doi: 10.1126/science.1170335
(16) Guo, B. D.; Liu, Q.; Chen, E. D.; Zhu, H.W.; Fang, L.; Gong, J.R. Nano Lett. 2010, 10, 4975. doi: 10.1021/nl103079j
(17) Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao,W. J.;Wang, F. B.; Xia,X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t
(18) Li, X. L.;Wang, H. L.; Robinson, J. T.; Sanchez, H.; Diankov,G.; Dai, H. J. J. Am. Chem. Soc. 2009, 131, 15939. doi: 10.1021/ja907098f
(19) Jin, Z.; Yao, J.; Kittrell, C.; Tour, J. M. ACS Nano 2011, 5, 4112.doi: 10.1021/nn200766e
(20) Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.;Dubey, M.; Ajayan, P. M. ACS Nano 2010, 4, 6337. doi: 10.1021/nn101926g
(21) Qian,W.; Cui, X.; Hao, R.; Hou, Y. L.; Zhang, Z. Y. ACS Appl. Mater. Interfaces 2011, 3, 2259. doi: 10.1021/am200479d
(22) Mou, Z. G.; Chen, X. Y.; Du, Y. K.;Wang, X. M.; Yang, P.;Wang, S. D. Appl. Surf. Sci. 2011, 258, 1704. doi: 10.1016/j.apsusc.2011.10.019
(23) Sun, L.;Wang, L.; Tian, C. G.; Tan, T. X.; Xie, Y.; Shi, K. Y.; Li,M. T.; Fu, H. G. RSC Adv. 2012, 2, 4498. doi: 10.1039/c2ra01367c
(24) Wakeland, S.; Martinez, R.; Grey, J. K.; Luhrs, C. C. Carbon2010, 48, 3463. doi: 10.1016/j.carbon.2010.05.043
(25) Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.;Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771. doi: 10.1021/cm981085u
(26) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. doi: 10.1021/ja01539a017
(27) Xue, L. P.; Zheng, M. B.; Shen, C. F.; Lü, H. L.; Li, N.W.; Pan,L. J.; Cao, J. M. Chin. J. Inorg. Chem. 2010, 26, 1375. [薛露平, 郑明波, 沈辰飞, 吕洪岭, 李念武, 潘力佳, 曹洁明. 无机化学学报, 2010, 26, 1375.]
(28) Hontoria-Lucas, C.; Lopez-Peinado, A. J.; Lopez-Gonzalez, J.D.; Rojas-Cervantes, M. L.; Martin-Aranda, R. M. Carbon1995, 33, 1585. doi: 10.1016/0008-6223(95)00120-3
(29) Guo, H. L.;Wang, X. F.; Qian, Q. Y.;Wang, F. B.; Xia, X. H.ACS Nano 2009, 3, 2653. doi: 10.1021/nn900227d
(30) Liu, Z. H.;Wang, Z. M.; Yang, X. J.; Ooi, K. Langmuir 2002,18, 4926. doi: 10.1021/la011677i
(31) Chen, Y.; Zhang, X.; Yu, P.; Ma, Y.W. J. Power Sources 2010,195, 3031. doi: 10.1016/j.jpowsour.2009.11.057

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[3] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[4] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[5] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[6] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[7] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[8] ZHOU Yang, CHENG Qing-Qing, HUANG Qing-Hong, ZOU Zhi-Qing, YAN Liu-Ming, YANG Hui. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1429-1435.
[9] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[10] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[11] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[12] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[13] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[14] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[15] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.