Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (10): 2355-2362    DOI: 10.3866/PKU.WHXB201208242
CATALYSIS AND SURFACE SCIENCE     
Investigation of the Adsorption Behavior of PbPc on Graphene by Raman Spectroscopy
LING Xi, ZHANG Jin
Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download:   PDF(852KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Using graphene-enhanced Raman scattering, the Raman signals of molecules attached to graphene can be obtained. For different molecules and vibrational modes, the enhancement factors are different. Here, we have investigated the variation in the adsorption behavior of lead phthalocyanine (PbPc) Langmuir-Blodgett (LB) films on graphene under annealing using Raman spectroscopy. With increasing annealing temperature, it was found that the Raman intensity of the PbPc molecules first increased and then decreased. At the sublimation temperature, the enhanced Raman signal was the strongest, indicating that the orientation of the PbPc molecules had changed from perpendicular to parallel to the graphene surface. As the annealing temperature was increased towards the sublimation temperature, some vibrational modes with low Raman scattering cross-section appeared, and they were enhanced at higher temperatures. This indicates that the PbPc molecules are deformed due to π-π interactions with graphene, and change their structure from nonplanar to planar. When the annealing temperature was increased even further, some new vibrational modes appeared, which can be attributed to the reduction of Pb(II) to Pb(0) in the PbPc molecules.



Key wordsGraphene      PbPc      Graphene enhanced Raman scattering      Molecular deformation     
Received: 16 July 2012      Published: 24 August 2012
MSC2000:  O647  
Fund:  

The project was supported by the National Natural Science Foundation of China (NSFC)(51121091, 50972001, and 21129001) and the Ministry of Science and Technology of China (MOST) (2011CB932601).

Cite this article:

LING Xi, ZHANG Jin. Investigation of the Adsorption Behavior of PbPc on Graphene by Raman Spectroscopy. Acta Phys. Chim. Sin., 2012, 28(10): 2355-2362.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201208242     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I10/2355

(1) Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.;Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Nano Lett. 2010, 10 (2),553. doi: 10.1021/nl903414x
(2) Ling, X.; Zhang, J. Small 2010, 6 (18), 2020. doi: 10.1002/smll.201000918
(3) Ling, X.;Wu, J. X.; Xu,W. G.; Zhang, J. Small 2012, 8 (9),1365. doi: 10.1002/smll.v8.9
(4) Xu, H.; Xie, L. M.; Zhang, H. L.; Zhang, J. ACS Nano 2011, 5 (7), 5338. doi: 10.1021/nn103237x
(5) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A.A. Nature 2005, 438 (7065), 197.
(6) Geim, A. K. Science 2009, 324 (5934), 1530. doi: 10.1126/science.1158877
(7) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6 (3), 183. doi: 10.1038/nmat1849
(8) Jensen, L.; Aikens, C. M.; Schatz, G. C. Chem. Soc. Rev. 2008,37 (5), 1061. doi: 10.1039/b706023h
(9) Otto, A.; Futamata, M. Top Appl. Phys. 2006, 103, 147. doi: 10.1007/3-540-33567-6
(10) Arenas, J. F.; Soto, J.; Pelaez, D.; Fernandez, D. J.; Otero, J. C.Int. J. Quantum Chem. 2005, 104 (5), 681. doi: 10.1002/(ISSN)1097-461X
(11) Kambhampati, P.; Child, C. M.; Foster, M. C.; Campion, A.J. Chem. Phys. 1998, 108 (12), 5013. doi: 10.1063/1.475909
(12) Morton, S. M.; Jensen, L. Abstr. Pap. Am. Chem. Soc. 2009, 238.
(13) Persson, B. N. J.; Zhao, K.; Zhang, Z. Y. Phys. Rev. Lett. 2006,96 (20), 207401. doi: 10.1103/PhysRevLett.96.207401
(14) Mukherjee, B.; Mukherjee, M. Org. Electron. 2009, 10 (7),1282. doi: 10.1016/j.orgel.2009.07.006
(15) Papageorgiou, N.; Salomon, E.; Angot, T.; Layet, J. M.;Giovanelli, L.; Le Lay, G. Progress in Surface Science 2004, 77 (5-8), 139. doi: 10.1016/j.progsurf.2005.01.001
(16) Xiao, K.; Liu, Y. Q.; Huang, X. B.; Xu, Y.; Yu, G.; Zhu, D. B.J. Phys. Chem. B 2003, 107 (35), 9226. doi: 10.1021/jp0349379
(17) Tackley, D. R.; Dent, G.; Smith,W. E. Phys. Chem. Chem. Phys.2001, 3 (8), 1419.
(18) Liu, Z.; Zhang, X.; Zhang, Y.; Jiang, J. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2007, 67 (5),1232. doi: 10.1016/j.saa.2006.10.013
(19) Kera, S.; Fukagawa, H.; Kataoka, T.; Hosoumi, S.; Yamane, H.;Ueno, N. Phys. Rev. B 2007, 75 (12), 121305. doi: 10.1103/PhysRevB.75.121305
(20) Papageorgiou, N.; Mossoyan, J. C.; Mossoyan-Deneux, M.;Terzian, G.; Janin, E.; Gothelid, M.; Giovanelli, L.; Layet, J.M.; Le Lay, G. Appl. Surf. Sci. 2000, 162, 178. doi: 10.1016/S0169-4332(00)00189-6
(21) Papageorgiou, N.; Salomon, E.; Angot, T.; Layet, J. M.;Giovanelli, L.; Lay, G. L. Progress in Surface Science 2004, 77, (5-8), 139. doi: 10.1016/j.progsurf.2005.01.001
(22) Shibuta, M.; Yamamoto, K.; Miyakubo, K.; Yamada, T.;Munakata, T. Phys. Rev. B 2009, 80 (11), 113310. doi: 10.1103/PhysRevB.80.113310
(23) Shibuta, M.; Miyakubo, K.; Yamada, T.; Munakata, T. J. Phys. Chem. C 2011, 115 (39), 19269. doi: 10.1021/jp205922q
(24) Yamamoto, I.; Mikamori, M.; Yamamoto, R.; Yamada, T.;Miyakubo, K.; Ueno, N.; Munakata, T. Phys. Rev. B 2008, 77 (11), 115404. doi: 10.1103/PhysRevB.77.115404
(25) Ogawa, K.; Yonehara, H.; Pac, C. J. Langmuir 1994, 10 (7),2068. doi: 10.1021/la00019a008
(26) Mack, J.; Stillman, M. J. J. Phys. Chem-Us. 1995, 99 (20),7935. doi: 10.1021/j100020a015
(27) Xiang, H. Q.; Tanaka, K.; Takahara, A.; Kajiyama, T. Langmuir2002, 18 (6), 2223. doi: 10.1021/la011401a
(28) Pasimeni, L.; Meneghetti, M.; Rella, R.; Valli, L.; Granito, C.;Troisi, L. Thin Solid Films 1995, 265 (1-2), 58. doi: 10.1016/0040-6090(95)06598-9
(29) Farag, A. A. M. Opt. Laser Technol. 2007, 39 (4), 728. doi: 10.1016/j.optlastec.2006.03.011
(30) Zhang, Y. X.; Zhang, X. X.; Liu, Z. Q.; Xu, H.; Jiang, J. Z. Vib. Spectrosc. 2006, 40 (2), 289. doi: 10.1016/j.vibspec.2005.11.004
(31) Shi, Y. M.; Kim, K. K.; Reina, A.; Hofmann, M.; Li, L. J.;Kong, J. ACS Nano 2010, 4 (5), 2689. doi: 10.1021/nn1005478

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[5] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[6] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[7] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[8] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[9] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[10] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[11] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[12] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.
[13] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.
[14] WANG Xu-Chun, LI Jin-Ze, LI Guang-Yong, WANG Jin, ZHANG Xue-Tong, GUO Qiang. Fabrication and Performance of Various Aerogel Microspheres[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2141-2152.
[15] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.