Please wait a minute...
Acta Phys. Chim. Sin.
THERMODYNAMICS, KINETICS, AND STRUCTURAL CHEMISTRY     
Simulation Study of the Effect ofMethanol on the Structure and Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid
WANG Ding, TIAN Guo-Cai
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
Download:   PDF(2118KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

The microstructure and properties of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM] [BF4])/methanol mixtures with different amount-of-substance fractions for methanol (0.1-0.9) were studied by molecular dynamics (MD) simulations at 298.15 K and 0.1 MPa. The densities, radial distribution functions, coordination numbers, self-diffusion coefficients, viscosities, and conductivities of the systems were obtained. The simulated densities agreed with experimental values. As the methanol amount-ofsubstance fraction increased, the radial distribution functions of different components in the mixture showed regular changes, the interaction between the anion and cation and the viscosity decreased, and the conductivity and the self-diffusion coefficients increased. The spatial distribution functions obtained from the MD simulations were visualized to depict the microscopic structures of different components in the system.



Key wordsIonic liquid      1-Butyl-3-methylimidazolium tetrafluoroborate      Methanol      Molecular dynamics simulation      Microstructure      Physicochemical property     
Received: 12 June 2012      Published: 27 August 2012
MSC2000:  O643  
  O645  
Fund:  

The project was supported by the National Natural Science Foundation of China (50904031, 51264021), Back-up Personnel Foundation of Academic and Technology Leaders of Yunnan Province, China (2011CI013), and Natural Science Foundation of Yunnan Province, China (2008E0049M).

Cite this article:

WANG Ding, TIAN Guo-Cai. Simulation Study of the Effect ofMethanol on the Structure and Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid. Acta Phys. Chim. Sin., 2012, 28(11): 2558-2566.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201208271     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I11/2558

(1) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002,102, 3667. doi: 10.1021/cr010338r
(2) Earle, M. J.; Seddon, K. R. Pure Appl. Chem. 2000, 72, 1391.doi: 10.1351/pac200072071391
(3) Wilkes, J. Green Chem. 2002, 4, 73. doi: 10.1039/b110838g
(4) Hagiwara, R.; Ito, Y. J. Fluor. Chem. 2000, 105, 221. doi: 10.1016/S0022-1139(99)00267-5
(5) Wakai, C.; Oleinikova, A.; Ott, M.;Weingartner, H. J. Phys. Chem. B 2005, 109, 17028. doi: 10.1021/jp053946+
(6) Welton, T. Chem. Rev. 1999, 99, 2071. doi: 10.1021/cr980032t
(7) Zhang, J. M.;Wu,W. Z.; Jiang, T.; Gao, H. X.; Liu, Z. M.; He,J.; Han, B. X. J. Chem. Eng. Data 2003, 48, 1315. doi: 10.1021/je034078h
(8) Zhai, C. P.;Wang, J. J.; Xuan, X. P.;Wang, H. Q. Acta Phys. -Chim. Sin. 2006, 22, 456. [翟翠萍, 王键吉, 轩小朋,汪汉卿. 物理化学学报, 2006, 22, 456.] doi: 10.3866/PKU.WHXB20060413
(9) Arce, A.; Rodil, E.; Soto, A. J. Solut. Chem. 2006, 35, 63.doi: 10.1007/s10953-006-8939-y
(10) Zafarani-Moattar, M. T.; Majdan-Cegincara, R. J. Chem. Eng. Data 2007, 52, 2359. doi: 10.1021/je700338t
(11) Domanska, U.; Laskowska, M. J. Chem. Eng. Data 2009, 54,2113. doi: 10.1021/je8008254
(12) Hou, H. Y.; Huang, Y. R.;Wang, S. Z.; Bai, B. F. Acta Phys. -Chim. Sin. 2011, 27, 2512. [侯海云, 黄银蓉, 王升泽,白博峰. 物理化学学报, 2011, 27, 2512.] doi: 10.3866/PKU.WHXB20111120
(13) Hanke, C. G.; Atamas, N. A.; Lynden-Bell, R. M. Green Chem.2002, 4, 107. doi: 10.1039/b109179b
(14) Wu, X. P.; Liu, Z. P. Acta Phys. -Chim. Sin. 2005, 21, 1036.[吴晓萍, 刘志平. 物理化学学报, 2005, 21, 1036.] doi: 10.3866/PKU.WHXB20050918
(15) Wu, X. P.; Liu, Z. P.; Huang, S. P.;Wang,W. C. Phys. Chem. Chem. Phys. 2005, 7, 2771.
(16) Raabe, G.; Kohler, J. J. Chem. Phys. 2008, 129, 144503. doi: 10.1063/1.2990653
(17) Jahangiri, S.; Taghikhani, M.; Behnejad, H.; Ahmadi, S. J. Mol. Phys. 2008, 8, 1015. doi: 10.1080/00268970802068495
(18) Mendez-Morales, T.; Carrete, J.; Cabeza, O.; Gallego, L. J.;Varela, L. M. J. Phys. Chem. B 2011, 115, 11170. doi: 10.1021/jp206341z
(19) Ye, T. X.; Zhang, Y. H.; Liu, J. H.; Zhang, Z. L. J. China Univ. Petro. (Edition of Natural Science) 2004, 28 (4), 105. [叶天旭, 张予辉, 刘金河, 张在龙. 中国石油大学学报(自然科学版), 2004, 28 (4), 105.]
(20) Zhao, D. B.; Kou, Y. Univ. Chem. 2002, 17 (1), 42. [赵东滨,寇元. 大学化学, 2002, 17 (1), 42.]
(21) Canongia-Lopes, J. N.; Deschamps, J.; Padua, A. A. H. J. Phys. Chem. B 2004, 108, 2038. doi: 10.1021/jp0362133
(22) Canongia-Lopes, J. N.; Deschamps, J.; Padua, A. A. H. J. Phys. Chem. B 2004, 108, 11250. doi: 10.1021/jp0476996
(23) Bhargava, B. L.; Balasubramanian, S. J. Chem. Phys. 2005, 123,144505. doi: 10.1063/1.2041487
(24) Schroder, C.; Rudas, T.; Neumayr, G.; Benkner, S.; Steinhauser,O. J. Chem. Phys. 2007, 127, 234503. doi: 10.1063/1.2805074
(25) Kowsari, M. H.; Alavi, S.; Ashrafizaadeh, M.; Najafi, B.J. Chem. Phys. 2008, 129, 224508. doi: 10.1063/1.3035978
(26) Skarmoutsos, I.; Dellis, D.; Matthews, R. P.;Welton, T.; Hunt, P.A. J. Phys. Chem. B 2012, 116, 4921. doi: 10.1021/jp209485y
(27) Feng, H. J.; Zhou, J.; Qian, Y. J. Chem. Phys. 2011, 135,144501. doi: 10.1063/1.3641486
(28) de Andrade, J.; Boes, E. S.; Stassen, H. J. Phys. Chem. B 2002,106, 13344. doi: 10.1021/jp0216629
(29) Cornell,W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K.M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J.W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179. doi: 10.1021/ja00124a002
(30) Lyubartsev, A. P.; Laaksonen, A. Comput. Phys. Commun. 2000,128, 565. doi: 10.1016/S0010-4655(99)00529-9
(31) Iglesias-Otero, M. A.; Troncoso, J.; Carballo, E. J. Solut. Chem.2007, 36, 1219. doi: 10.1007/s10953-007-9186-6
(32) Gu, Z.; Brennecke, J. F. J. Chem. Eng. Data 2002, 47 (2), 339.doi: 10.1021/je010242u
(33) Mendez-Morales, T.; Carrete, J.; Garcia, M.; Cabeza, O.;Gallego, L. J.; Varela, L. M. J. Phys. Chem. B 2011, 115, 15313.doi: 10.1021/jp209563b
(34) Liu, J.; Cao, D. P.; Zhang, L. Q. J. Phys. Chem. C 2008, 112,6653. doi: 10.1021/jp800474t
(35) Abbott, A. P. ChemPhysChem 2005, 6, 2502.
(36) Noda, A.; Hayamizu, K.;Watanabe, M. J. Phys. Chem. B 2001,105, 4603. doi: 10.1021/jp004132q
(37) Stoppa, A.; Hunger, J.; Buchner, R. J. Chem. Eng. Data 2009,54, 472. doi: 10.1021/je800468h
(38) Zhang, S. J.; Lü, X. M. Ionic Liquids-from Fundamentals to Applications; Science Press: Beijing, 2006; p 111. [张锁江,吕兴梅. 离子液体-从基础研究到工业应用. 北京: 科学出版社, 2006: 111.]
(39) Laaksonen, L. J. Mol. Graph. 1992, 10, 33. doi: 10.1016/0263-7855(92)80007-Z

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 247-255.
[2] TONG Jing, QU Ye, JING Liqiang, LIU Lu, LIU Chunhui. Measurement of Vapor Pressure and Vaporization Enthalpy for Ionic Liquids 1-Hexyl-3-methylimidazolium Threonine Salt[C6mim][Thr]by Isothermogravimetric Analysis[J]. Acta Phys. Chim. Sin., 2018, 34(2): 194-200.
[3] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[4] LIU Fu-Feng, FAN Yu-Bo, LIU Zhen, BAI Shu. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1905-1914.
[5] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[6] MENG Yan-Shuang, WANG Chen, WANG Lei, WANG Gong-Rui, XIA Jun, ZHU Fu-Liang, ZHANG Yue. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1915-1922.
[7] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[8] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[9] CAO Liao-Ran, ZHANG Chun-Yu, ZHANG Ding-Lin, CHU Hui-Ying, ZHANG Yue-Bin, LI Guo-Hui. Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1354-1365.
[10] CHEN Yi-Jian, ZHOU Hong-Tao, GE Ji-Jiang, XU Gui-Ying. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1214-1222.
[11] CHEN Fang, LIU Yuan-Yuan, WANG Jian-Long, Su Ning-Ning, LI Li-Jie, CHEN Hong-Chun. nvestigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1140-1148.
[12] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[13] ZHENG Qi-Ge, LIU Hui, XIA Quan, LIU Qing-Shan, MOU Lin. Density, Dynamic Viscosity and Electrical Conductivity of Two Hydrophobic Phosphonium Ionic Liquids[J]. Acta Phys. Chim. Sin., 2017, 33(4): 736-744.
[14] BAI Jin, CHEN Xin, XI Zhao-Yi, WANG Xiang, LI Qiang, HU Shao-Zheng. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(3): 611-619.
[15] TONG Jing, LIU Lu, ZHANG Duo, ZHENG Xu, CHEN Xia, YANG Jia-Zhen. Parameters of the Activation of Viscous Flow of Aqueous[C2mim] [Ala][J]. Acta Phys. Chim. Sin., 2017, 33(3): 513-519.