Please wait a minute...
Acta Phys. Chim. Sin.
Enhanced Visible Light Activity of BiVO4 by Treating in HCl Aqueous Solution and Its Mechanism
LONG Ming-Ce, WAN Lei, ZENG Ceng, LIU Yi-Yi, CHEN Yuan-Yuan
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Download:   PDF(872KB) Export: BibTeX | EndNote (RIS)       Supporting Info


Enhanced photocatalytic activity of BiVO4 has been achieved by immersing in HCl aqueous solution. After treated for 6 h in 0.1 mol·L-1 HCl solution, the visible light activity of BiVO4 for phenol degradation increased by 3.5 times. X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS) were carried out to analyze the crystal components and surface morphology of the treated samples. Comparison of samples treated in different acids and chlorides indicated that with the appropriate concentrations of H+ and Cl- ions, BiVO4 partially dissolved, was deposited as BiOCl, and finally a composite of flaked BiOCl and micro-particles of BiVO4 with pits formed over the surface. The flatband potential of BiOCl was measured by a slurry method. According to the results of energy band analyses and photocatalytic activity tests of mixed BiVO4 and BiOCl particles, there is no interparticle electron transfer effect between them. Therefore, the mechanism of the enhanced photocatalytic performance of the treated BiVO4 can be attributed to the unevenness of the surface, which can facilitate photogenerated charge separation. This type of surface treatment method could be developed into an effective method for preparing photocatalysts with enhanced photocatalytic performance.

Key wordsPhotocatalysis      Bismuth vanadate      Bismuth oxychloride      Heterojunction      Surface nanostructure      Visible light activity      Phenol degradation     
Received: 19 July 2012      Published: 03 September 2012
MSC2000:  O643  

The project was supported by the Natural Science Foundation of China (20907031).

Cite this article:

LONG Ming-Ce, WAN Lei, ZENG Ceng, LIU Yi-Yi, CHEN Yuan-Yuan. Enhanced Visible Light Activity of BiVO4 by Treating in HCl Aqueous Solution and Its Mechanism. Acta Phys. Chim. Sin., 2012, 28(12): 2917-2923.

URL:     OR

(1) Kudo, A.; Ueda, K.; Kato, H.; Mikami, I. Catal. Lett. 1998, 53,229. doi: 10.1023/A:1019034728816
(2) Kohtani, S.; Makino, S.; Kudo, A.; Tokumura, K.; Ishigaki, Y.;Matsunaga, T.; Nikaido, O.; Hayakawa, K.; Nakagaki, R. Chem. Lett. 2002, 31, 660.
(3) Kohtani, S.; Tomohiro, M.; Tokumura, K.; Nakagaki, R. Appl. Catal. B: Environ. 2005, 58, 265. doi: 10.1016/j.apcatb.2004.12.007
(4) Zhou, L.;Wang,W. Z.; Liu, S.W.; Zhang, L. S.; Xu, H. L.; Zhu,W. J. Mol. Catal. A: Chem. 2006, 252, 120. doi: 10.1016/j.molcata.2006.01.052
(5) Zhang, L.; Chen, D. R.; Jiao, X. L. J. Phys. Chem. B 2006, 110,2668. doi: 10.1021/jp056367d
(6) Wang, D.; Jiang, H.; Zong, X.; Xu, Q.; Ma, Y.; Li, G.; Li, C.Chem. Eur. J. 2011, 17, 1275. doi: 10.1002/chem.v17.4
(7) Xi, G.; Ye, J. Chem. Commun. 2010, 46, 1893.
(8) Cheng, B.;Wang,W. G.; Shi, L.; Zhang, J.; Ran, J. R.; Yu, H. G.Int. J. Photoenergy 2012, 797968.
(9) Ren, L.; Jin, L.;Wang, J. B.; Yang, F.; Qiu, M. Q.; Yu, Y.Nanotechnology 2009, 20, 115603. doi: 10.1088/0957-4484/20/11/115603
(10) Jiang, H. Y.; Dai, H. X.; Meng, X.; Zhang, L.; Deng, J. G.; Ji, K.M. Chin. J. Catal. 2011, 32, 939. [蒋海燕, 戴洪兴, 孟雪,张磊, 邓积光, 吉科猛. 催化学报, 2011, 32, 939.] doi: 10.1016/S1872-2067(10)60215-X
(11) Long, M. C.; Cai,W. M.; Cai, J.; Zhou, B. X.; Chai, X. Y.;Wu,Y. H. J. Phys. Chem. B 2006, 110, 20211. doi: 10.1021/jp063441z
(12) Long, M. C.; Cai,W. M.; Kisch, H. J. Phys. Chem. C 2008, 112,548. doi: 10.1021/jp075605x
(13) Long, M. C.; Jiang, J. J.; Li, Y.; Cao, R. Q.; Zhang, L. Y.; Cai,W. M. Nano-Micro Lett. 2011, 3, 171.
(14) Cao, S.W.; Yin, Z.; Barber, J.; Boey, F. Y.; Loo, S. C.; Xue, C.ACS Appl. Mater. Interfaces 2012, 4, 418. doi: 10.1021/am201481b
(15) Huang,W. L.; Zhu, Q. S. J. Comput. Chem. 2008, 30, 183.
(16) Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. J. Phys. Chem. C2008, 112, 747. doi: 10.1021/jp077471t
(17) Yu, C. L.; Cao, F. F.; Shu, Q.; Bao, Y. L.; Xie, Z. P.; Yu, J. C.;Yang, K. Acta Phys. -Chim . Sin. 2012, 28, 647. [余长林, 操芳芳, 舒庆, 包玉龙, 谢志鹏, Yu, Y. J., 杨凯. 物理化学学报,2012, 28, 647.] doi: 10.3866//PKU.WHXB201201051
(18) Wang,W.; Huang, F.; Lin, X. Scripta Mater. 2007, 56, 669. doi: 10.1016/j.scriptamat.2006.12.023
(19) Chai, S. Y.; Kim, Y. J.; Jung, M. H.; Chakraborty, A. K.; Jung,D.; Lee,W. I. J. Catal. 2009, 262, 144. doi: 10.1016/j.jcat.2008.12.020
(20) Chang, X.; Yu, G.; Huang, J.; Li, Z.; Zhu, S.; Yu, P.; Cheng, C.;Deng, S.; Ji, G. Catal. Today 2010, 153, 193. doi: 10.1016/j.cattod.2010.02.069
(21) Kubacka, A.; Fernandez-Garcia, M.; Colon, G. Chem. Rev.2012, 112, 1555. doi: 10.1021/cr100454n
(22) Roy, A. M.; De, G. C.; Sasmal, N.; Bhattacharyya, S. S. Int. J. Hydrog. Energy 1995, 20, 627. doi: 10.1016/0360-3199(94)00105-9
(23) Li, B. X.;Wang, Y. F.; Liu, T. X. Acta Phys. -Chim. Sin. 2011,27, 2946. [李本侠, 王艳芬, 刘同宣. 物理化学学报, 2011, 27,2946.] doi: 10.3866/PKU.WHXB20112946
(24) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121,11459. doi: 10.1021/ja992541y
(25) Dean, J. A. Lange's Chemistry Handbook, 13rd ed.; SciencePress: Beijing, 1991; p 9-9; translated by Sang, J. F., Cao, S. J.,Xing,W. M., Zheng, F. Y., Lu, X. M. [Dean, J. A. 兰氏化学手册. 尚久方, 操时杰, 辛无名, 郑飞勇, 陆晓明, 林长青译. 北京:科学出版社, 1991: 9-9.]
(26) Robert, D. Catal. Today 2007, 122, 20. doi: 10.1016/j.cattod.2007.01.060
(27) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125,3082. doi: 10.1021/ja027751g
(28) Iwase, A.; Kato, H.; Okutomi, H.; Kudo, A. Chem. Lett. 2004,33, 1260. doi: 10.1246/cl.2004.1260

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[3] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[4] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[5] CHEN Xin, HU Shao-Zheng, LI Ping, LI Wei, MA Hong-Fei, LU Guang. Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2532-2541.
[6] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[7] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[8] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[9] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[10] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[11] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[12] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[13] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.
[14] TANG Wei, WANG Jing. Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1087-1104.
[15] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.