Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (10): 2269-2275    DOI: 10.3866/PKU.WHXB201209061
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation of Three-Dimensional Carbon Microtube/Carbon Nanotube Composites and Their Application in Supercapacitor
HUANG Wen, ZHAO Jin, KANG Qi, XU Kaichen, YU Zhen, WANG Jian, MA Yan-Wen, HUANG Wei
Jiangsu Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, P. R. China
Download:   PDF(947KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Carbon microtubes (CMTs) were prepared by the carbonization of poplar catkins according to their natural microtubular structure. The CMTs were then used as the substrate for growing carbon nanotubes (CNTs) by chemical vapor deposition. The prepared three-dimensional CMT/CNT composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. Two-electrode supercapacitor cells constructed with the CMT/CNT showed a specific capacitance of 77 F·g-1 with 1 mol·L-1Li2SO4 electrolyte, which is much higher than that for CMTs (23 F·g-1).



Key wordsCarbon microtube      Carbon nanotube      Poplar catkin      Biomass      Supercapacitor     
Received: 03 July 2012      Published: 06 September 2012
MSC2000:  O646  
Fund:  

The project was supported by the National Basic Research Program of China (2009CB930600, 2012CB933301), National Natural Science Foundation of China (20833002, 20903057, 20905038, 20974046), Ministry of Education of China (IRT1148), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, Key Projects for International Cooperation, China (BZ2010043), Jiangsu Provincial Natural Science Foundation (BK2010525, BK2011750).

Cite this article:

HUANG Wen, ZHAO Jin, KANG Qi, XU Kaichen, YU Zhen, WANG Jian, MA Yan-Wen, HUANG Wei. Preparation of Three-Dimensional Carbon Microtube/Carbon Nanotube Composites and Their Application in Supercapacitor. Acta Phys. -Chim. Sin., 2012, 28(10): 2269-2275.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201209061     OR     http://www.whxb.pku.edu.cn/Y2012/V28/I10/2269

(1) Yang, Z.; Yao, Z.; Li, G. F.; Fang, G. Y.; Nie, H. G.; Liu, Z.;Zhou, X. M.; Chen, X.; Huang, S. M. ACS Nano 2012, 6, 205.doi: 10.1021/nn203393d
(2) Wang, Z. J.; Jia, R. R.; Zheng, J. F.; Zhao, J. G.; Li, L.; Song, J.L.; Zhu, Z. P. ACS Nano 2011, 5, 1677. doi: 10.1021/nn1030127
(3) Zhang, M. H.; Yuan, R.; Chai, Y. Q.; Chen, S. H.; Zhong, X.;Zhong, H. A.;Wang, C. RSC Adv. 2012, 2, 4639. doi: 10.1039/c2ra20374j
(4) Yoo, J. J.; Balakrishnan, K.; Huang, J. S.; Meunier, V.; Sumpter,B. G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.;Vajtai, R.; Ajayan, P. M. Nano Lett. 2011, 11, 1423. doi: 10.1021/nl200225j
(5) Masarapu, C.; Zeng, H. F.; Hung, K. H.;Wei, B. Q. ACS Nano2009, 3, 2199. doi: 10.1021/nn900500n
(6) Zhang, L.; Shi, G. Q. J. Phys. Chem. C 2011, 115, 17206. doi: 10.1021/jp204036a
(7) Vinayan, B. P.; Nagar, R.; Raman, V.; Rajalakshmi, N.;Dhathathreyan, K. S.; Ramaprabhu, S. J. Mater. Chem. 2012,22, 9949. doi: 10.1039/c2jm16294f
(8) Woo, S.; Kim, Y. R.; Chung, T. D.; Piao, Y.; Kim, H.Electrochim. Acta 2012, 59, 509. doi: 10.1016/j.electacta.2011.11.012
(9) Li, J. J.; Ma, Y.W.; Jiang, X.; Feng, X. M.; Fan, Q. L.; Huang,W. IEEE Trans. Nanotechnol. 2012, 11, 3. doi: 10.1109/TNANO.2011.2158236
(10) Yun, Y. S.; Kim, D.; Tak, Y.; Jin, H. J. Synth. Met. 2011, 161, 21.
(11) Dujardin, E.; Ebbesen, T.W.; Hiura, H.; Tanigaki, K. Science1994, 265, 1850. doi: 10.1126/science.265.5180.1850
(12) Pan, X. L.; Fan, Z. L.; Chen,W.; Ding, Y. J.; Luo, H. Y.; Bao, X.H. Nat. Mater. 2007, 6, 507. doi: 10.1038/nmat1916
(13) Meduri, P.; Kim, J. H.; Russell, H. B.; Jasinski, J.;Sumanasekera, G. U.; Sunkara, M. K. J. Phys. Chem. C 2010,114, 10621. doi: 10.1021/jp100422f
(14) Yu, Y.; Gu, L.; Zhu, C. B.; van Aken, P. A.; Maier, J. J. Am. Chem. Soc. 2009, 131, 15984. doi: 10.1021/ja906261c
(15) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414,188. doi: 10.1038/35102535
(16) Supple, S.; Quirke, N. Phys. Rev. Lett. 2003, 90, 214501.
(17) Pint, C. L.; Nicholas, N.W.; Xu, S.; Sun, Z. Z.; Tour, J. M.;Schmidt, H. K.; Gordon, R. G.; Hauge, R. H. T. Carbon 2011,49, 4890. doi: 10.1016/j.carbon.2011.07.011
(18) Lu,W.; Qu, L. T.; Henry, K.; Dai, L. M. J. Power Sources 2009,189, 1270. doi: 10.1016/j.jpowsour.2009.01.009
(19) Ma, Y.W.; Sun, L. Y.; Huang,W.; Zhang, L. R.; Zhao, J.; Fan,Q. L.; Huang,W. J. Phys. Chem. C 2011, 115, 24592. doi: 10.1021/jp207736h
(20) Ma, Y.W.; Zhao, J.; Zhang, L. R.; Zhao, Y.; Fan, Q. L.; Li, X.A.; Hu, Z.; Huang,W. Carbon 2011, 49, 5292. doi: 10.1016/j.carbon.2011.07.049
(21) Ma, Y.W.; Xiong, C. Y.; Huang,W.; Zhao, J. Chin. J. Inorg. Chem. 2012, 28, 546. [马延文, 熊传银, 黄雯, 赵进, 李兴螯, 范曲立, 黄维. 无机化学学报, 2012, 28, 546.]
(22) Han, C. C.; Lee, J. T.; Yang, R.W.; Chang, H.; Han, C. H.Chem. Mater. 1999, 11, 1806. doi: 10.1021/cm990032p
(23) Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Phys. Rep. 2005, 409, 47. doi: 10.1016/j.physrep.2004.10.006
(24) Hsieh, C. T.; Chou, Y.W.; Chen,W. Y. J. Solid State Electrochem. 2008, 12, 663. doi: 10.1007/s10008-007-0399-9
(25) Chen,W.; Rakhi, R. B.; Hu, L. B.; Xie, X.; Cui, Y.; Alshareef,H. N. Nano Lett. 2011, 11, 5165. doi: 10.1021/nl2023433
(26) Zhang, L. L.; Zhao, S. Y.; Tian, X. N.; Zhao, X. S. Langmuir2010, 26, 17624. doi: 10.1021/la103413s
(27) Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Nano Lett. 2010, 10, 4863. doi: 10.1021/nl102661q

[1] Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.
[2] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.
[3] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[4] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[5] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[6] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[7] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[8] Chun-Rong LIAO,Feng XIONG,Xian-Jun LI,Yi-Qiang WU,Yong-Feng LUO. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.
[9] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[10] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.
[11] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2245-2252.
[12] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.
[13] Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 130-148.
[14] Xiao ZHOU,Min-Qiang SUN,Geng-Chao WANG. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 975-982.
[15] Ji-Ye XIA,Guo-Dong DONG,Bo-Yuan TIAN,Qiu-Ping YAN,Jie HAN,Song QIU,Qing-Wen LI,Xue-Lei LIANG,Lian-Mao PENG. Contact Resistance Effects in Carbon Nanotube Thin Film Transistors[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 1029-1035.