Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (10): 2456-2464    DOI: 10.3866/PKU.WHXB201209062
PHYSICAL CHEMISTRY OF MATERIALS     
Controlled Growth of Graphene on Metal Substrates and STM Characterizations for Microscopic Morphologies
ZHANG Yan-Feng1,2, GAO Teng1, ZHANG-Yu2, LIU Zhong-Fan1
1 Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University;
2 Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871
Download:   PDF(4995KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Recently, chemical vapor deposition (CVD) has been widely applied to the large-scale synthesis of graphene on various metal substrates. As a powerful and direct imaging method, scanning tunneling microscopy (STM) has been used to study the microscopic morphologies of graphene on metal substrates, for the purpose of further optimizing the growth parameters. This review presents the recent progress in the controlled growth of graphene on Cu foils, Pt foils, and Ni substrates, as well as the research of the microscopic morphologies, defect states, and stacking orders of graphene. Monolayer growth of graphene on Cu and Pt foils follows a surface catalyzed growth mechanism, while bilayer graphene growth follows an epitaxial growth mechanism. After the formation of a bilayer, the corrugated substrate breaks the planar conjugated π bonds of graphene, inducing a binding configuration change from sp2 to sp3. Then, pristine wrinkles are introduced by the thermal expansion mismatch between graphene and the metal substrates. Finally, the roughness of graphene on the Pt foils is considerably less than that of graphene on Cu foils, and the multifaceted interweaving Pt substrate has almost no effect on the in-plane continuity of graphene.



Key wordsChemical vapor deposition      Metal substrate      Graphene      Scanning tunneling microscope     
Received: 19 July 2012      Published: 06 September 2012
MSC2000:  O641-33  
Fund:  

The project was supported by the National Natural Science Foundation of China (21073003) and The Ministry of Science and Technology of China (2011CB921903, 2011CB933003, 2012CB921404).

Cite this article:

ZHANG Yan-Feng, GAO Teng, ZHANG-Yu, LIU Zhong-Fan. Controlled Growth of Graphene on Metal Substrates and STM Characterizations for Microscopic Morphologies. Acta Phys. -Chim. Sin., 2012, 28(10): 2456-2464.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201209062     OR     http://www.whxb.pku.edu.cn/Y2012/V28/I10/2456

(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.Science 2004, 306, 666. doi: 10.1126/science.1102896
(2) Bolotin, K. I.; Sikes, K. J.; Zhang, Z.; Klima, M.; Fudenberg,G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008,146, 351. doi: 10.1016/j.ssc.2008.02.024
(3) Schwierz, F. Nat. Nanotech. 2010, 5, 487. doi: 10.1038/nnano.2010.89
(4) Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.;Chiu, H. Y.; Grill, A.; Avouris, P. Science 2012, 327, 662.
(5) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K.M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.;Ruoff, R. S. Nature 2006, 442, 282. doi: 10.1038/nature04969
(6) Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.;Wang, X. R.;Wang, E. G.; Dai, H. J. Nat. Nanotech. 2008, 3, 538. doi: 10.1038/nnano.2008.210
(7) Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.;Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P.N.; de Heer,W. A. J. Phys. Chem. B 2004, 108, 19912. doi: 10.1021/jp040650f
(8) Sutter, P.W.; Flege, J. I.; Sutter, E. A. Nat. Mater. 2008, 7, 406.doi: 10.1038/nmat2166
(9) Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.;Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9, 30. doi: 10.1021/nl801827v
(10) Li, X. S.; Cai,W.W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.;Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.;Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312. doi: 10.1126/science.1171245
(11) Li, X. S.; Zhu, Y.W.; Cai,W.W.; Borysiak, M.; Han, B. Y.;Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Nano Lett.2009, 9, 4359. doi: 10.1021/nl902623y
(12) Gao, L.; Guest, J. R.; Guisinger, N. P. Nano Lett. 2010, 10,3512. doi: 10.1021/nl1016706
(13) Pan, Y.; Zhang, H. G.; Shi, D. X.; Sun, J. T.; Du, S. X.; Liu, F.;Gao, H. J. Adv. Mater. 2009, 21, 2777. doi: 10.1002/adma.200800761
(14) Zhang, Y. F.; Gao, T.; Gao, Y. B.; Xie, S. B.; Ji, Q. Q.; Yan, K.;Peng, H. L.; Liu, Z. F. ACS Nano 2011, 5, 4014. doi: 10.1021/nn200573v
(15) Ishigami, M.; Chen, J. H.; Cullen,W. G.; Fuhrer, M. S.;Williams, E. D. Nano Lett. 2007, 7, 1643. doi: 10.1021/nl070613a
(16) Xu, K.; Cao, P.; Heath, J. R. Nano Lett. 2009, 9, 4446. doi: 10.1021/nl902729p
(17) Yan, K.; Peng, H. L.; Zhou, Y.; Li, H.; Liu, Z. F. Nano Lett.2011, 11, 1106. doi: 10.1021/nl104000b
(18) Gao, T.; Xie, S. B.; Gao, Y. B.; Liu, M. X.; Chen, Y. B.; Zhang,Y. F.; Liu, Z. F. ACS Nano 2011, 11, 9194.
(19) Liu, N.; Fu, L.; Dai, B. Y.; Yan, K.; Liu, X.; Zhao, R. Q.; Zhang,Y. F.; Liu, Z. F. Nano Lett. 2011, 11, 297. doi: 10.1021/nl103962a
(20) Zhang, Y. F.; Gao, T.; Xie, S. B.; Dai, B. Y.; Gao, Y. B.; Chen, Y.B.; Liu, M. X. Nano Res. 2012, 5, 402. doi: 10.1007/s12274-012-0221-6
(21) Zhao, R. Q.; Zhang, Y. F.; Gao, T.; Gao, Y. B.; Liu, N.; Fu, L.;Liu, Z. F. Nano Res. 2011, 4, 712. doi: 10.1007/s12274-011-0127-8
(22) Meng, L.; Zhang, Y. F.; Yan,W.; Feng, L.; He, L. Dou, R. F.;Nie, J. C. Appl. Phys. Lett. 2012, 100, 091601. doi: 10.1063/1.3691952
(23) Li, G. H.; Luican, A.; Lopes dos Santos, J. M. B.; Castro, N. A.H.; Reina, A.; Kong, J.; Andrei, E. Y. Nat. Phys. 2010, 4, 109.
(24) Chen, Z. Y.; Yuan, H. T.; Zhang, Y. F.; Nomura, K.; Gao, T.;Gao, Y. B.; Shimotani, H.; Liu, Z. F.; Iwasa, Y. Nano Lett. 2012,12, 2212. doi: 10.1021/nl204012c
(25) Gao, T.; Gao, Y. B.; Chang, C. Z.; Chen, Y. B.; Liu, M. X.; Xie,S. B.; He, K.; Ma, X. C.; Zhang, Y. F.; Liu, Z. F. ACS Nano2012, 6, 6562. doi: 10.1021/nn302303n

[1] Qi HU,Chuanhong JIN. In Situ TEM Observation of Radiolysis and Condensation of Water via Graphene Liquid Cell[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 101-107.
[2] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[3] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[4] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[5] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[6] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[7] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[8] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[9] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[10] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[11] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[12] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[13] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[14] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.
[15] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2404-2423.