Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (10): 2493-2499    DOI: 10.3866/PKU.WHXB201209071
PHYSICAL CHEMISTRY OF MATERIALS     
Controlled Synthesis of Cobalt-Doped Magnetic Iron Oxide Nanoparticles
LI Zhen-Hu, MA Yu-Rong, QI Li-Min
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering,Peking University, Beijing 100871, P.R. China
Download:   PDF(1984KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Uniform sphere-like Co-doped iron oxide nanoparticles were synthesized by the thermolysis of iron oleate and cobalt oleate precursors in octadecene in the presence of oleic acid. The Co/Fe mole ratios in the final Co-doped iron oxide can be controlled by changing their ratios in the reaction precursors. With the increase of Co/Fe mole ratios from 0.024 to 0.156 in the final iron oxide nanoparticles, the magnetic saturation values of the nanoparticles slightly decreased from 39 to 30 emu·g-1, while their coercivity values increased from 0 to 190 Oe. The sizes of the Co-doped iron oxide nanoparticles increased from 7 to 14 nm when the thermolysis time was increased from 0.5 to 3 h with a thermolysis temperature 305℃. Generally, with increasing thermolysis time the metal elements in the final nanoparticles were partially reduced. The domain polymorph of the final nanoparticles was magnetite with a very small amount of ferrous oxide for thermolysis time less than 1 h, while the phases were a mixture of magnetite and wüstite ferrous oxide for thermolysis time longer than 2 h. Further increasing thermolysis time to 3 h, except Fe3O4 and FeO, CoFe alloys appear too. It indicates that the iron (cobalt) elements were reduced from trivalence to bivalence, and finally to zero valence. The sizes of the iron oxide nanoparticles increased and more ferrous oxide appeared in the final products with increasing the thermolysis temperature.



Key wordsCobalt-doping      Magnetism      Iron oxide, Controlled synthesis      Thermolysis     
Received: 31 July 2012      Published: 07 September 2012
MSC2000:  O648  
Fund:  

The project was supported by the National Natural Science Foundation of China (50902002, 51121091) and Specialized Research Fund for the Doctoral Program of Higher Education, China (20090001120015).

Cite this article:

LI Zhen-Hu, MA Yu-Rong, QI Li-Min. Controlled Synthesis of Cobalt-Doped Magnetic Iron Oxide Nanoparticles. Acta Phys. Chim. Sin., 2012, 28(10): 2493-2499.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201209071     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I10/2493

(1) Xie, J.; Huang, J.; Li, X.; Sun, S.; Chen, X. Curr. Med. Chem.2009, 16, 1278. doi: 10.2174/092986709787846604
(2) Ho, D.; Sun, X.; Sun, S. Accounts Chem. Res. 2011, 44, 875.doi: 10.1021/ar200090c
(3) Gupta, A. K.; Gupta, M. Biomaterials 2005, 26, 3995. doi: 10.1016/j.biomaterials.2004.10.012
(4) Qiao, R. R.; Zeng, J. F.; Jia, Q. J.; Du, J.; Shen, L.; Gao, M. Y.Acta Phys. -Chim. Sin. 2012, 28, 993. [乔瑞瑞, 曾剑峰, 贾巧娟, 杜军, 沈琳, 高明远. 物理化学学报, 2012, 28, 993.]doi: 10.3866/PKU.WHXB201203023
(5) Yang, C.;Wu, J.; Hou, Y. Chem. Commun. 2011, 47, 5130. doi: 10.1039/c0cc05862a
(6) Sun, S.; Zeng, H. J. Am. Chem. Soc. 2002, 124, 8204. doi: 10.1021/ja026501x
(7) Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.;Park, J. H.; Hwang, N. M.; Hyeon, T. Nat. Mater. 2004, 3, 891.doi: 10.1038/nmat1251
(8) Kovalenko, M. V.; Bodnarchuk, M. I.; Lechner, R. T.; Hesser,G.; Schäffler, F.; Heiss,W. J. Am. Chem. Soc. 2007, 129, 6352.doi: 10.1021/ja0692478
(9) De Silva, C. R.; Smith, S.; Shim, I.; Pyun, J.; Gutu, T.; Jiao, J.;Zheng, Z. J. Am. Chem. Soc. 2009, 131, 6336. doi: 10.1021/ja9014277
(10) Lee, J. H.; Huh, Y. M.; Jun, Y.W.; Seo, J.W.; Jang, J. T.; Song,H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S.; Cheon, J.Nat. Med. 2007, 13, 95. doi: 10.1038/nm1467
(11) Staniland, S.;Williams,W.; Telling, N.; van der Laan, G.;Harrison, A.;Ward, B. Nat. Nano 2008, 3, 158. doi: 10.1038/nnano.2008.35
(12) Coker, V. S.; Telling, N. D.; van der Laan, G.; Pattrick, R. A. D.;Pearce, C. I.; Arenholz, E.; Tuna, F.;Winpenny, R. E. P.; Lloyd,J. R. ACS Nano 2009, 3, 1922. doi: 10.1021/nn900293d
(13) Song, Q.; Zhang, Z. J. J. Am. Chem. Soc. 2004, 126, 6164. doi: 10.1021/ja049931r
(14) Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.;Wang, S. X.; Li, G. J. Am. Chem. Soc. 2003, 126, 273.
(15) Bao, N.; Shen, L.;Wang, Y.; Padhan, P.; Gupta, A. J. Am. Chem. Soc. 2007, 129, 12374. doi: 10.1021/ja074458d
(16) Ayyappan, S.; Mahadevan, S.; Chandramohan, P.; Srinivasan,M. P.; Philip, J.; Raj, B. J. Phy. Chem. C 2010, 114, 6334. doi: 10.1021/jp911966p
(17) Junior, A. F.; Zapf, V.; Egan, P. J. Appl. Phys. 2007, 101,09M506.
(18) Tackett, R.; Sudakar, C.; Naik, R.; Lawes, G.; Rablau, C.;Vaishnava, P. P. J. Magn. Magn. Mater. 2008, 320, 2755. doi: 10.1016/j.jmmm.2008.06.006
(19) Nakagomi, F.; da Silva, S.W.; Garg, V. K.; Oliveira, A. C.;Morais, P. C.; Junior, A. F.; Lima, E. C. D. J. Appl. Phys. 2007,101, 09M514.
(20) Caruntu, G.; Newell, A.; Caruntu, D.; O'Connor, C. J. J. Appl. Phys. 2007, 434-435, 637.
(21) Stefanescu, M.; Stoia, M.; Caizer, C.; Dippong, T.; Barvinschi,P. J. Therm. Anal. Calorim. 2009, 97, 245. doi: 10.1007/s10973-009-0250-x
(22) Hu, L.; de Montferrand, C.; Lalatonne, Y.; Motte, L.; Brioude,A. J. Phys. Chem. C 2012, 116, 4349.
(23) Chakrabarti, S.; Mandal, S. K.; Chaudhuri, S. Nanotechnology2005, 16, 506. doi: 10.1088/0957-4484/16/4/029
(24) Chalasani, R.; Vasudevan, S. J. Phys. Chem. C 2011, 115,18088. doi: 10.1021/jp204697f
(25) Tzitzios, V. J. Appl. Phys. 2011, 109, 07A313.
(26) Nam, K. M.; Shim, J. H.; Ki, H.; Choi, S. I.; Lee, G.; Jang, J. K.;Jo, Y.; Jung, M. H.; Song, H.; Park, J. T. Angew. Chem. Int. Edit.2008, 47, 9504. doi: 10.1002/anie.v47:49
(27) Seo,W. S.; Lee, J. H.; Sun, X.; Suzuki, Y.; Mann, D.; Liu, Z.;Terashima, M.; Yang, P. C.; McConnell, M. V.; Nishimura, D.G.; Dai, H. Nat. Mater. 2006, 5, 971. doi: 10.1038/nmat1775
(28) Chen, C. J.; Chiang, R. K.; Lai, H. Y.; Lin, C. R. J. Phys. Chem. C 2010, 114, 4258. doi: 10.1021/jp908153y
(29) Huang, C. C.; Chang, C. N.; Yeh, C. S. Nanoscale 2011, 3,4254. doi: 10.1039/c1nr10701a

[1] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[2] MI Chuan-Tong, LIU Guo-Ping, WANG Jia-Jia, GUO Xin-Li, WU San-Xie, YU Jin. First-Principles Calculations of the Adsorption of Au, Ag and Cu Atoms on Defected Graphene[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1230-1238.
[3] WANG Wen-Qing, SHEN Xin-Chun ZHANG Yu-Feng GONG Yan. Emergent Paramagnetism in D- and L-Alanine Crystals: Spin-Orbital Separation in Quasi-One-Dimensional N+H…O? Bonds[J]. Acta Phys. Chim. Sin., 2013, 29(07): 1396-1400.
[4] NIE Jing, LU Zhang-Hui, YAO Jun, GUI Tian, CHEN Xiang-Shu. Structural, Electronic and Magnetic Properties of TinO2 and TinO2- (n=1-10) Clusters[J]. Acta Phys. Chim. Sin., 2013, 29(07): 1433-1440.
[5] XIA Juan, SONG Le-Xin, DANG Zheng, SHAO Zhi-Cheng. Polyethylene Glycol/Fe3O4 Nanoparticle Composite Materials: Structure, Physical Properties and Application[J]. Acta Phys. Chim. Sin., 2013, 29(07): 1524-1533.
[6] XIANG Mei, HE Chang-Cheng, WANG Hui-Liang. Magnetic Polyacrylamide/Fe3O4 Nanocomposite Hydrogel with High Mechanical Strength[J]. Acta Phys. Chim. Sin., 2011, 27(05): 1267-1272.
[7] YAN Gong-Qin, WANG Wei, SUN Zhi-Gang, GUAN Jian-Guo. Magnetite Sub-Microspheres with Controlled Diameter and Magnetic Properties Synthesized by the Citrate-Assisted Polyol Process[J]. Acta Phys. Chim. Sin., 2010, 26(11): 3120-3126.
[8] YU Li, ZHENG Guang, HE Kai-Hua, ZENG Zhong-Liang, CHEN Qi-Li, WANG Qing-Bo. Electronic Structure and Magnetism of Transition Metal Doped SnO2[J]. Acta Phys. Chim. Sin., 2010, 26(03): 763-768.
[9] LEI Xue-Ling; ZHU Heng-Jiang; WANG Xian-Ming; LUO You-Hua. Study on Structures and Properties of ZrnB(n=1-13) Clusters Using DFT[J]. Acta Phys. Chim. Sin., 2008, 24(09): 1655-1661.
[10] YAN Gong-Qin; GUAN Jian-Guo; WANG Wei. Monodispersed Fe3O4 Hollow Submicro-spheres Prepared by Pyrolysis-Deoxidization[J]. Acta Phys. Chim. Sin., 2007, 23(12): 1958-1962.
[11] WANG Jun; FAN Mei-Qing; YANG Piao-Ping; YU Wei; JING Xiao-Yan; ZHANG Mi-Lin; LIU Tian-Fu; DUAN Xue. Preparation and Characterization of Magnetic Solid Superacid SO2-4/ZrO2/Fe3O4/Al2O3[J]. Acta Phys. Chim. Sin., 2007, 23(04): 595-600.
[12] JIANG Wei;LI Feng-Sheng;CHEN Ling-Yun;YANG Yi;CHU Jian-Jun. Preparation and Properties of Novel Magnetic Fe3O4/EDTA Nano-composite Particles[J]. Acta Phys. Chim. Sin., 2005, 21(02): 182-186.
[13] Zhang Jing-Lai;Miao Ti-Fang;Tao Ruo-Jie;Zang Shuang-Quan;Tian An-Min. Density Functional Theory Study on Phenolato-bridged CuⅡ-CoⅡ Heterobinuclear Complex[J]. Acta Phys. Chim. Sin., 2003, 19(06): 549-552.
[14] Hong San-Guo, Peng Yi-Yuan, Zhu Shi-Lai, Wang Shen. Theoretical Study on the Thermolyses of ο-acetylcyclopentanone and ο-acetylcyclohexanone[J]. Acta Phys. Chim. Sin., 1999, 15(02): 186-189.
[15] Zhang Jiao-Qiang,Zhu Chun-Hua,Gong Xue-Dong,Xiao He-Ming. AM1 Study on the Thermolyses Mechanism of TNAZ and Its Derivatives[J]. Acta Phys. Chim. Sin., 1997, 13(07): 612-616.