Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (10): 2465-2470    DOI: 10.3866/PKU.WHXB201209103
Solution-Processable, Highly Conductive, Permanently Rippled Graphene Sheets
FAN Cheng-Wei, ZHANG Xin, CHEN Sheng, WANG Hai-Fang, CAO Ao-Neng
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China
Download:   PDF(1045KB) Export: BibTeX | EndNote (RIS)      


The single atom thick sp2 carbon structure of graphene gives rise to its unique properties and potential applications. However, one serious obstacle for its application is that graphene is prone to aggregate in suspension and gradually stack into graphite. Here, we report a novel approach to solve this problem. The basic idea is to introduce sp2 carbon nano-islands on the graphene sheets that act as permanent ripples to prevent the stacking and graphitization of graphene and make it easy to re-suspend. Unlike most functionalization methods, this approach avoids the introduction of heteroatoms. Thus, it does not deteriorate the structure and change the properties of graphene. The carbon-rippled graphene has a remarkable electronic conductivity of ~65000 S·m-1, and can be readily suspended in solvent.

Key wordsGraphene      Ripple      Carbon nanocage      Expandable graphite      Conductivity      Solution stability     
Received: 23 July 2012      Published: 10 September 2012
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (21073117), National Key Basic Research Program (973) (2009CB930200, 2011CB933402), and Shanghai Leading Academic Disciplines, China (S30109).

Cite this article:

FAN Cheng-Wei, ZHANG Xin, CHEN Sheng, WANG Hai-Fang, CAO Ao-Neng. Solution-Processable, Highly Conductive, Permanently Rippled Graphene Sheets. Acta Phys. -Chim. Sin., 2012, 28(10): 2465-2470.

URL:     OR

(1) Mermin, N. D. Phys. Rev. 1968, 176, 250. doi: 10.1103/PhysRev.176.250
(2) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.;Booth, T. J.; Roth, S. Nature 2007, 446, 60. doi: 10.1038/nature05545
(3) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.;Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451. doi: 10.1073/pnas.0502848102
(4) Fasolino, A.; Los, J. H.; Katsnelson, M. I. Nat. Mater. 2007, 6,858. doi: 10.1038/nmat2011
(5) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849
(6) Huang, X.; Yin, Z. Y.;Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q.C.; Yan, Q. Y.; Boey, F.; Zhang, H. Small 2011, 7, 1876. doi: 10.1002/smll.201002009
(7) Geim, A. K. Science 2009, 324, 1530. doi: 10.1126/science.1158877
(8) Jiang, H. J. Small 2011, 7, 2413.
(9) Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Chem. Soc. Rev. 2012,41, 666. doi: 10.1039/c1cs15078b
(10) Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.;Wang, X. R.;Wang, E. G.; Dai, H. J. Nat. Nanotechnol. 2008, 3, 538. doi: 10.1038/nnano.2008.210
(11) Liu, Z.; Fan, C.W.; Chen, L.; Cao, A. N. J. Nanosci. Nanotech.2010, 10, 7382. doi: 10.1166/jnn.2010.2780
(12) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.; Sun, Z.; De,S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gunko, Y.; Boland,J.; Niraj, P.; Duesberg, G.; Krishnamurti, S.; Goodhue, R.;Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. Nat. Nanotechnol. 2008, 3, 563.
(13) Eda, G.; Fanchini, G.; Chhowalla, M. Nat. Nanotechnol. 2008,3, 270. doi: 10.1038/nnano.2008.83
(14) Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.;Wallace, G. G.Nat. Nanotechnol. 2008, 3, 101. doi: 10.1038/nnano.2007.451
(15) Cao, A. N.; Liu, Z.; Chu, S. S.;Wu, M. H.; Ye, Z. M.; Cai, Z.W.; Chang, Y. L.;Wang, S. F.; Gong, Q. H.; Liu, Y. F. Adv. Mater. 2010, 22, 103. doi: 10.1002/adma.v22:1
(16) Qi, X. Y.; Pu, K. Y.; Zhou, X. Z.; Li, H.; Liu, B.; Boey, F.;Huang, W.; Zhang, H. Small 2010, 6, 663. doi: 10.1002/smll.v6:5
(17) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K.M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.;Ruoff, R. S. Nature 2006, 442, 282. doi: 10.1038/nature04969
(18) Choucair, M.; Thordarson, P.; Stride, J. A. Nat. Nanotechnol.2009, 4, 30. doi: 10.1038/nnano.2008.365
(19) Qi, X. Y.; Pu, K. Y.; Li, H.; Zhou, X. Z.;Wu, S.; Fan, Q. L.; Liu,B.; Boey, F.; Huang,W.; Zhang, H. Angew. Chem. Int. Edit.2010, 49, 9426. doi: 10.1002/anie.201004497
(20) Feng, X.; Hu, G.; Hu, J. Nanoscale 2011, 3, 2099. doi: 10.1039/c1nr00004g
(21) Dreyer, D. R.; Park, S.; Bielawski, C.W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228. doi: 10.1039/b917103g
(22) Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X. S.;Velamakanni, A.; Ruoff, R. S. Nano Lett. 2009, 9, 1593. doi: 10.1021/nl803798y
(23) Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.;Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S.Nature 2007, 448, 457. doi: 10.1038/nature06016
(24) Zhou, X. Z.; Huang, X.; Qi, X. Y.;Wu, S. X.; Xue, C.; Boey, F.Y. C.; Yan, Q. Y.; Chen, P.; Zhang, H. J. Phys. Chem. C 2009,113, 10842. doi: 10.1021/jp903821n
(25) Chang, Y. L.; Chen, S.; Cao, A. N. J. Shanghai University (Natural Science) 2010, 16 (6), 577. [常艳丽, 陈胜, 曹傲能. 上海大学学报(自然科学版), 2010, 16 (6), 577.]
(26) Yang, S. T.; Chen, S.; Chang, Y.; Cao, A.; Liu, Y.;Wang, H.J. Colloid Interface Sci. 2011, 359, 24. doi: 10.1016/j.jcis.2011.02.064
(27) Yang, S. T.; Chang, Y.;Wang, H.; Liu, G.; Chen, S.;Wang, Y.;Liu, Y.; Cao, A. J. Colloid Interface Sci. 2010, 351, 122. doi: 10.1016/j.jcis.2010.07.042
(28) Chang, Y.; Yang, S. T.; Liu, J. H.; Dong, E.;Wang, Y.; Cao, A.;Liu, Y.;Wang, H. Toxicol Lett. 2011, 200, 201. doi: 10.1016/j.toxlet.2010.11.016
(29) Hao, R.; Qian,W.; Zhang, L.; Hou, Y. Chem. Commun. 2008,6576.
(30) Qian,W.; Cui, X.; Hao, R.; Hou, Y.; Zhang, Z. ACS Appl. Mater. Interfaces 2011, 3 (7), 2259. doi: 10.1021/am200479d
(31) Qian,W.; Hao, R.; Hou, Y.; Tian, Y.; Shen, C.; Gao, H.; Liang,X. Nano Res. 2009, 2, 706. doi: 10.1007/s12274-009-9074-z
(32) Kauzmann,W. Adv. Protein Chem. 1959, 14, 1. doi: 10.1016/S0065-3233(08)60608-7
(33) Dill, K. A. Biochemistry 1990, 29, 7133. doi: 10.1021/bi00483a001
(34) Jung, I.; Dikin, D. A.; Piner, R. D.; Ruoff, R. S. Nano Lett.2008, 8, 4283. doi: 10.1021/nl8019938
(35) Gomez-Navarro, C.;Weitz, R. T.; Bittner, A. M.; Scolari, M.;Mews, A.; Burghard, M.; Kern, K. Nano Lett. 2007, 7, 3499.doi: 10.1021/nl072090c
(36) Si, Y. C.; Samulski, E. T. Nano Lett. 2008, 8, 1679. doi: 10.1021/nl080604h

[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[2] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[3] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[4] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[5] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[6] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[7] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[8] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[9] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[10] Ting ZHANG,Jie SHEN. Aggregation Properties and Thermodynamics of Micellization of Gemini Surfactants with Diester and Rigid Spacers in Organic Alcohol-Water Mixed Media[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 795-802.
[11] Qi-Ge ZHENG,Hui LIU,Quan XIA,Qing-Shan LIU,Lin MOU. Density, Dynamic Viscosity and Electrical Conductivity of Two Hydrophobic Phosphonium Ionic Liquids[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 736-744.
[12] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[13] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[14] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[15] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.