Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (10): 2336-2342    DOI: 10.3866/PKU.WHXB201209104
Modification of Carbon Nitride Photocatalysts by Copolymerization with Diaminomaleonitrile
ZHENG Hua-Rong, ZHANG Jin-Shui, WANG Xin-Chen, FU Xian-Zhi
Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, P. R. China
Download:   PDF(1137KB) Export: BibTeX | EndNote (RIS)      


g-C3N4photocatalysts were synthesized by copolymerization of diaminomaleonitrile (DMNA) with dicyanodiamide (DCDA) at high temperatures. The effect of copolymerization on the crystal structure, chemical structure, band structure, texture, optical property and photocatalytic performance of g-C3N4 was studied by such characterization techniques as X-ray diffraction patterns (XRD), Fourier transformed infrared (FT-IR), transmission electron microscopy (TEM), nitrogen-sorption (N2-sorption),electron paramagnetic resonance (EPR), UV-Vis diffuse reflectance spectra (UV-Vis DSR) and photoluminescence (PL) analyses. Results demonstrated that the graphitic-like layer packing structure of g-C3N4 remained unchanged after the modification; however the copolymerization with DMNA can efficiently extend the delocalizationof π-electrons and induce the formation of surface junctions, greatly enhancing the light-harvesting abilityof g-C3N4 in visible light region and promoting the separation of photogenerated charge carriers, respectively. Photocatalytic performance showed that all DMNA-modified samples presented an enhanced H2 evolution activity under visible light irradiation. The optimized weight-in amount of DMNA is found to be 0.01g, by which the modified sample shows the highest hydrogen evolution rate of 45.0 μmol·h-1. This value is 4.5 times as high as that of the unmodified carbon nitride sample.

Key wordsPhotocatalyst      Solar energy utilization      Hydrogen fuel      Copolymerization      Carbon nitride     
Received: 09 August 2012      Published: 10 September 2012
MSC2000:  O641  

The project was supported by the National Basic Research Program of China (973 Program,2013CB632405) and National Natural Science Foundation of China(21033003,21173043).

Cite this article:

ZHENG Hua-Rong, ZHANG Jin-Shui, WANG Xin-Chen, FU Xian-Zhi. Modification of Carbon Nitride Photocatalysts by Copolymerization with Diaminomaleonitrile. Acta Phys. Chim. Sin., 2012, 28(10): 2336-2342.

URL:     OR

(1) Liu, A. Y.; Cohen, M. L. Science 1989, 245, 841. doi: 10.1126/science.245.4920.841
(2) Teter, D. M.; Hemley, R. J. Science 1996, 271, 53. doi: 10.1126/science.271.5245.53
(3) Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.;Norman, A. D. N. J. Chem. 2002, 26, 508. doi: 10.1039/b111062b
(4) Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller,J. O.; Schlögl, R.; Carlsson, J. M. J. Mater. Chem. 2008, 18,4893. doi: 10.1039/b800274f
(5) Donnet, C.; Erdemir, A. Surf. Coat.Technol. 2004, 76, 180.
(6) Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45, 4467. doi: 10.1002/(ISSN)1521-3773
(7) Zhao, H.; Lei, M.; Yang, X.; Jian, J.; Chen, X. J. Am. Chem. Soc. 2005, 127, 15722. doi: 10.1021/ja055877i
(8) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.;Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8,76. doi: 10.1038/nmat2317
(9) Maeda, K.;Wang, X.; Nishihara, Y.; Lu, D.; Antonietti, M.;Domen, K. J. Phys. Chem. C 2009, 113, 4940. doi: 10.1021/jp809119m
(10) Zhang, J.; Sun, J.; Maeda, K.; Domen, K.; Liu, P.; Antonietti,M.; Fu, X.;Wang, X. Energy Environ. Sci. 2010, 4, 675.
(11) Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou,Y.; Fu, X.; Antonietti, M. J. Am. Chem. Soc. 2009, 131, 1680.doi: 10.1021/ja809307s
(12) Chen, X.; Jun, Y. S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu,X.; Antonietti, M.;Wang, X. Chem. Mater. 2009, 21, 4093. doi: 10.1021/cm902130z
(13) Di, Y.;Wang, X.; Thomas, A.; Antonietti, M. ChemCatChem2010, 2, 834. doi: 10.1002/cctc.201000057
(14) Zhang, J.; Grzelczak, M.; Hou, Y.; Maeda, K.; Domen, K.; Fu,X.; Antonietti, M.;Wang, X. Chem. Sci. 2011, 3, 443.
(15) Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Adv. Mater. 2009, 21, 1609. doi: 10.1002/adma.v21:16
(16) Chen, X.; Zhang, J.; Fu, X.; Antonietti, M.;Wang, X. J. Am. Chem. Soc. 2009, 131, 11658. doi: 10.1021/ja903923s
(17) Liu, G.; Niu, P.; Sun, C.; Smith, S. C.; Chen, Z.; Lu, G. Q.;Cheng, H. M. J. Am. Chem. Soc. 2010, 132, 11642. doi: 10.1021/ja103798k
(18) Cui, Y.; Zhang, J.; Zhang, G.; Huang, J.; Liu, P.; Antonietti, M.;Wang, X. J. Mater. Chem. 2011, 21, 13032. doi: 10.1039/c1jm11961c
(19) Zhang, G.; Zhang, J.; Zhang, M.;Wang, X. J. Mater. Chem. 2012, 22, 8083. doi: 10.1039/c2jm00097k
(20) Zhang, J.; Zhang, M.; Zhang, G.;Wang, X. ACS Catal. 2012, 2,940. doi: 10.1021/cs300167b
(21) Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.;Epping, J. D.; Fu, X.; Antonietti, M.;Wang, X. Angew. Chem. Int. Edit. 2010, 49, 441. doi: 10.1002/anie.200903886
(22) Zhang, J.; Zhang, G.; Chen, X.; Lin, S.; Möhlmann, L.; Do?çga,G.; Lipner, G.; Antonietti, M.; Blechert, S.;Wang, X. Angew. Chem. Int. Edit. 2012, 51, 3183. doi: 10.1002/anie.v51.13
(23) Gupta, V. P.; Rawat, P.; Singh, R. N.; Tandon, P. Comput. Theor. Chem. 2012, 983, 7. doi: 10.1016/j.comptc.2011.12.006
(24) Kubota, Y.; Shibata, T.; Babamoto-Horiguchi, E.; Uehara, J.;Funabiki, K.; Matsumoto, S.; Ebihara, M.; Matsui, M.Tetrahedron 2009, 65, 2506. doi: 10.1016/j.tet.2009.01.053
(25) Khanmohammadi, H.; Abdollahi, A. Dyes Pigments 2012, 94,163. doi: 10.1016/j.dyepig.2011.12.013
(26) Johnson, D. M.; Reybuck, S. E.; Lawton, R. G.; Rasmussen, P.G. Macromolecules 2005, 38, 3615. doi: 10.1021/ma047918l
(27) MacLachlan, M. J.; Park, M. K.; Thompson, L. K. Inorg. Chem. 1996, 35, 5492. doi: 10.1021/ic960237p
(28) Tabbal, M.; Christidis, T.; Isber, S.; Mérel, P.; Khakani, M. A. E.;Chaker, M.; Amassian, A.; Martinu, L. J. Appl. Phys. 2005,98, 044310. doi: 10.1063/1.2009817
(29) Chen, X. B.; Shen, S. H.; Guo, L.; Mao, S. S. Chem. Rev. 2010,110, 6503. doi: 10.1021/cr1001645

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] BAI Jin, CHEN Xin, XI Zhao-Yi, WANG Xiang, LI Qiang, HU Shao-Zheng. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(3): 611-619.
[3] LIANG Dong-Mei, LENG Xia, MA Yu-Chen. Quasiparticle Band Structures and Optical Properties of Graphitic Carbon Nitrides[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1967-1976.
[4] WANG Yue, JIANG Quan, SHANG Jie-Kun, XU Jie, LI Yong-Xin. Advances in the Synthesis of Mesoporous Carbon Nitride Materials[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1913-1928.
[5] ZUO Hui-Wen, LU Chun-Hai, REN Yu-Rong, LI Yi, ZHANG Yong-Fan, CHEN Wen-Kai. Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1183-1190.
[6] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.
[7] CHANG Xiao-Xia, GONG Jin-Long. On the Importance of Surface Reactions on Semiconductor Photocatalysts for Solar Water Splitting[J]. Acta Phys. Chim. Sin., 2016, 32(1): 2-13.
[8] HUANG Yan, FU Min, HE Tao. Synthesis of g-C3N4/BiVO4 Nanocomposite Photocatalyst and Its Application in Photocatalytic Reduction of CO2[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1145-1152.
[9] FENG Chang, DENG Xiao-Yan, NI Xiao-Xiao, LI Wei-Bing. Fabrication of Carbon Dots Modified Porous ZnO Nanorods with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2015, 31(12): 2349-2357.
[10] ZHANG Jian, WANG Yan-Juan, HU Shao-Zheng. Effect of K+ Doping on the Band Structure and Photocatalytic Performance of Graphitic Carbon Nitride Photocatalysts[J]. Acta Phys. Chim. Sin., 2015, 31(1): 159-165.
[11] JIN Rui-Rui, YOU Ji-Guang, ZHANG Qian, LIU Dan, HU Shao-Zheng, GUI Jian-Zhou. Preparation of Fe-Doped Graphitic Carbon Nitride with Enhanced Visible-Light Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1706-1712.
[12] LAN Ben-Yue, SHI Hai-Feng. Review of Systems for Photocatalytic Conversion of CO2 to Hydrocarbon Fuels[J]. Acta Phys. Chim. Sin., 2014, 30(12): 2177-2196.
[13] ZHANG Jin-Shui, WANG Bo, WANG Xin-Chen. Chemical Synthesis and Applications of Graphitic Carbon Nitride[J]. Acta Phys. Chim. Sin., 2013, 29(09): 1865-1876.
[14] DU Shu-Qing, YUAN Yu-Feng, TU Wei-Xia. Microwave-Hydrothermal Synthesis and Photocatalytic Activity of Zn2GeO4 Nanoribbons[J]. Acta Phys. Chim. Sin., 2013, 29(09): 2062-2068.
[15] SHANG Yang, CHEN Yang, SHI Zhan-Bin, ZHANG Dong-Feng, GUO Lin. Synthesis and Visible Light Photocatalytic Activities of Au/Cu2O Heterogeneous Nanospheres[J]. Acta Phys. Chim. Sin., 2013, 29(08): 1819-1826.