Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (10): 2336-2342    DOI: 10.3866/PKU.WHXB201209104
CATALYSIS AND SURFACE SCIENCE     
Modification of Carbon Nitride Photocatalysts by Copolymerization with Diaminomaleonitrile
ZHENG Hua-Rong, ZHANG Jin-Shui, WANG Xin-Chen, FU Xian-Zhi
Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, P. R. China
Download:   PDF(1137KB) Export: BibTeX | EndNote (RIS)      

Abstract  

g-C3N4photocatalysts were synthesized by copolymerization of diaminomaleonitrile (DMNA) with dicyanodiamide (DCDA) at high temperatures. The effect of copolymerization on the crystal structure, chemical structure, band structure, texture, optical property and photocatalytic performance of g-C3N4 was studied by such characterization techniques as X-ray diffraction patterns (XRD), Fourier transformed infrared (FT-IR), transmission electron microscopy (TEM), nitrogen-sorption (N2-sorption),electron paramagnetic resonance (EPR), UV-Vis diffuse reflectance spectra (UV-Vis DSR) and photoluminescence (PL) analyses. Results demonstrated that the graphitic-like layer packing structure of g-C3N4 remained unchanged after the modification; however the copolymerization with DMNA can efficiently extend the delocalizationof π-electrons and induce the formation of surface junctions, greatly enhancing the light-harvesting abilityof g-C3N4 in visible light region and promoting the separation of photogenerated charge carriers, respectively. Photocatalytic performance showed that all DMNA-modified samples presented an enhanced H2 evolution activity under visible light irradiation. The optimized weight-in amount of DMNA is found to be 0.01g, by which the modified sample shows the highest hydrogen evolution rate of 45.0 μmol·h-1. This value is 4.5 times as high as that of the unmodified carbon nitride sample.



Key wordsPhotocatalyst      Solar energy utilization      Hydrogen fuel      Copolymerization      Carbon nitride     
Received: 09 August 2012      Published: 10 September 2012
MSC2000:  O641  
  O649  
Fund:  

The project was supported by the National Basic Research Program of China (973 Program,2013CB632405) and National Natural Science Foundation of China(21033003,21173043).

Cite this article:

ZHENG Hua-Rong, ZHANG Jin-Shui, WANG Xin-Chen, FU Xian-Zhi. Modification of Carbon Nitride Photocatalysts by Copolymerization with Diaminomaleonitrile. Acta Phys. -Chim. Sin., 2012, 28(10): 2336-2342.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201209104     OR     http://www.whxb.pku.edu.cn/Y2012/V28/I10/2336

(1) Liu, A. Y.; Cohen, M. L. Science 1989, 245, 841. doi: 10.1126/science.245.4920.841
(2) Teter, D. M.; Hemley, R. J. Science 1996, 271, 53. doi: 10.1126/science.271.5245.53
(3) Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.;Norman, A. D. N. J. Chem. 2002, 26, 508. doi: 10.1039/b111062b
(4) Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller,J. O.; Schlögl, R.; Carlsson, J. M. J. Mater. Chem. 2008, 18,4893. doi: 10.1039/b800274f
(5) Donnet, C.; Erdemir, A. Surf. Coat.Technol. 2004, 76, 180.
(6) Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45, 4467. doi: 10.1002/(ISSN)1521-3773
(7) Zhao, H.; Lei, M.; Yang, X.; Jian, J.; Chen, X. J. Am. Chem. Soc. 2005, 127, 15722. doi: 10.1021/ja055877i
(8) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.;Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8,76. doi: 10.1038/nmat2317
(9) Maeda, K.;Wang, X.; Nishihara, Y.; Lu, D.; Antonietti, M.;Domen, K. J. Phys. Chem. C 2009, 113, 4940. doi: 10.1021/jp809119m
(10) Zhang, J.; Sun, J.; Maeda, K.; Domen, K.; Liu, P.; Antonietti,M.; Fu, X.;Wang, X. Energy Environ. Sci. 2010, 4, 675.
(11) Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou,Y.; Fu, X.; Antonietti, M. J. Am. Chem. Soc. 2009, 131, 1680.doi: 10.1021/ja809307s
(12) Chen, X.; Jun, Y. S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu,X.; Antonietti, M.;Wang, X. Chem. Mater. 2009, 21, 4093. doi: 10.1021/cm902130z
(13) Di, Y.;Wang, X.; Thomas, A.; Antonietti, M. ChemCatChem2010, 2, 834. doi: 10.1002/cctc.201000057
(14) Zhang, J.; Grzelczak, M.; Hou, Y.; Maeda, K.; Domen, K.; Fu,X.; Antonietti, M.;Wang, X. Chem. Sci. 2011, 3, 443.
(15) Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Adv. Mater. 2009, 21, 1609. doi: 10.1002/adma.v21:16
(16) Chen, X.; Zhang, J.; Fu, X.; Antonietti, M.;Wang, X. J. Am. Chem. Soc. 2009, 131, 11658. doi: 10.1021/ja903923s
(17) Liu, G.; Niu, P.; Sun, C.; Smith, S. C.; Chen, Z.; Lu, G. Q.;Cheng, H. M. J. Am. Chem. Soc. 2010, 132, 11642. doi: 10.1021/ja103798k
(18) Cui, Y.; Zhang, J.; Zhang, G.; Huang, J.; Liu, P.; Antonietti, M.;Wang, X. J. Mater. Chem. 2011, 21, 13032. doi: 10.1039/c1jm11961c
(19) Zhang, G.; Zhang, J.; Zhang, M.;Wang, X. J. Mater. Chem. 2012, 22, 8083. doi: 10.1039/c2jm00097k
(20) Zhang, J.; Zhang, M.; Zhang, G.;Wang, X. ACS Catal. 2012, 2,940. doi: 10.1021/cs300167b
(21) Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.;Epping, J. D.; Fu, X.; Antonietti, M.;Wang, X. Angew. Chem. Int. Edit. 2010, 49, 441. doi: 10.1002/anie.200903886
(22) Zhang, J.; Zhang, G.; Chen, X.; Lin, S.; Möhlmann, L.; Do?çga,G.; Lipner, G.; Antonietti, M.; Blechert, S.;Wang, X. Angew. Chem. Int. Edit. 2012, 51, 3183. doi: 10.1002/anie.v51.13
(23) Gupta, V. P.; Rawat, P.; Singh, R. N.; Tandon, P. Comput. Theor. Chem. 2012, 983, 7. doi: 10.1016/j.comptc.2011.12.006
(24) Kubota, Y.; Shibata, T.; Babamoto-Horiguchi, E.; Uehara, J.;Funabiki, K.; Matsumoto, S.; Ebihara, M.; Matsui, M.Tetrahedron 2009, 65, 2506. doi: 10.1016/j.tet.2009.01.053
(25) Khanmohammadi, H.; Abdollahi, A. Dyes Pigments 2012, 94,163. doi: 10.1016/j.dyepig.2011.12.013
(26) Johnson, D. M.; Reybuck, S. E.; Lawton, R. G.; Rasmussen, P.G. Macromolecules 2005, 38, 3615. doi: 10.1021/ma047918l
(27) MacLachlan, M. J.; Park, M. K.; Thompson, L. K. Inorg. Chem. 1996, 35, 5492. doi: 10.1021/ic960237p
(28) Tabbal, M.; Christidis, T.; Isber, S.; Mérel, P.; Khakani, M. A. E.;Chaker, M.; Amassian, A.; Martinu, L. J. Appl. Phys. 2005,98, 044310. doi: 10.1063/1.2009817
(29) Chen, X. B.; Shen, S. H.; Guo, L.; Mao, S. S. Chem. Rev. 2010,110, 6503. doi: 10.1021/cr1001645

[1] WANG Qin, XUE Minmin, ZHANG Zhuhua. Chemical Synthesis of Borophene: Progress and Prospective[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[2] Ze YU,Xiaohong LI,Yunchao LI,Mingfu YE. K+ Concentration-Dependent Conformational Change of Pb2+-Stabilized G-quadruplex[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1293-1298.
[3] Pingying LIU,Chunyan LIU,Qian LIU,Jing MA. Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1171-1178.
[4] Yasong ZHAO,Lijuan ZHANG,Jian QI,Quan JIN,Kaifeng LIN,Dan WANG. Graphdiyne with Enhanced Ability for Electron Transfer[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1048-1060.
[5] Wenqiong CHEN,Yongji GUAN,Xiaoping ZHANG,Youquan DENG. Influence of External Electric Field on Vibrational Spectrum of Imidazolium-Based Ionic Liquids Probed by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 912-919.
[6] Xi HE,Xiaoyu LÜ,Xi FAN,Wenjun LIN,Haoran LI,Congmin WANG. Ultra-High SO2 Capture by Anion-Functionalized Resins through Multiple-Site Adsorption[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 896-903.
[7] Dongmei JIANG,Le BO,Ting ZHU,Junbin TAO,Xiaoping YANG. Construction and NIR Luminescence Properties of Zn-Ln Rectangular Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 812-817.
[8] Yanfang SHEN,Longjiu CHENG. Electronic Stability of Eight-electron Tetrahedral Pd4 Clusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 830-836.
[9] Youkun ZHENG,Hui JIANG,Xuemei WANG. Multiple Strategies for Controlled Synthesis of Atomically Precise Alloy Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 740-754.
[10] Xiaohong GUO,Ying ZHOU,Lihong SHI,Yan ZHANG,Caihong ZHANG,Chuan DONG,Guomei ZHANG,Shaomin SHUANG. Luminescence Emission of Copper Nanoclusters by Ethanol-induced Aggregation and Aluminum Ion-induced Aggregation[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 818-824.
[11] Xiuqing REN,Xinzhang LIN,Xuemei FU,Chao LIU,Jinghui YAN,Jiahui HUANG. Synthesis of High Yield Au21(SR)15 Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 825-829.
[12] Nagaraju NARAYANAM,Kalpana CHINTAKRINDA,Weihui FANG,Lei ZHANG,Jian ZHANG. Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 781-785.
[13] An XIE,Zhi WANG,Qiaoyu WU,Liping CHENG,Genggeng LUO,Di SUN. [Ag25(SC6H4Pri)18(dppp)6](CF3SO3)7·CH3CN (HSC6H4Pri = 4-t-isopropylthiophenol, and dppp = 1, 3-bis(diphenyphosphino)propane) Cluster Containing a Sandwich-like Skeleton: Structural Characterization and Optical Properties[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 776-780.
[14] Wenwu XU,Yi GAO. Thiolate-Protected Hollow Gold Nanospheres[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 770-775.
[15] Guodong SUN,Xi KANG,Shan JIN,Xiaowu LI,Daqiao HU,Shuxin WANG,Manzhou ZHU. Synthesis and Structure Determination of Ag-Ni Alloy Nanocluster Ag4Ni2(SPhMe2)8 (SPhMe2 = 2, 4-dimethylbenzenethiol)[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 799-804.