Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (10): 2315-2326    DOI: 10.3866/PKU.WHXB201209146
CATALYSIS AND SURFACE SCIENCE     
Relationship between the Structures of Metal Oxide Catalysts and Their Properties in Selective Oxidation of Methanol
CHEN Wen-Long, LIU Hai-Chao
Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Green Chemistry Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download:   PDF(903KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Methanol is an important platform molecule for the production of energy and chemicals. For its efficient utilization, it is of critical significance to clarify the relationship between the structures of the catalysts and their performance as well as the corresponding reaction mechanisms. In this review, we summarized some recent progress in the understanding of the active structures of several metal oxide-based catalysts and the reaction mechanism, and the consequent tuning of their redox and acid sites for the selective oxidation of methanol. The catalysts included supported molybdenum oxides, supported vanadium oxides, and heteropolyacids with Keggin structures as well as rhenium oxides and ruthenium oxides recently explored for the methanol oxidation. Such progress provides insights into the design of novel catalysts more efficient for the oxidative conversion of methanol towards the targeted products.



Key wordsMethanol      Selective oxidation      Redox site      Acid site      Structure-activity relationship     
Received: 04 September 2012      Published: 14 September 2012
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (20825310, 20973011) and National Key Basic Research Program of China (973) (2011CB201400, 2011CB808700)

Cite this article:

CHEN Wen-Long, LIU Hai-Chao. Relationship between the Structures of Metal Oxide Catalysts and Their Properties in Selective Oxidation of Methanol. Acta Phys. Chim. Sin., 2012, 28(10): 2315-2326.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201209146     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I10/2315

(1) Olah, G. A.; Molnár, Á. Hydrocarbon Chemistry, 2nd ed.; JohnWiley & Sons: Hoboken, New Jersey, 2003; pp 114-117.
(2) Xu, X. D.; Moulijn, J. A. Energy & Fuels 1996, 10, 305. doi: 10.1021/ef9501511
(3) Hamelinck, C. N.; Faaij, A. P. C. J. Power Sources 2002, 111, 1.doi: 10.1016/S0378-7753(02)00220-3
(4) Olah, G. A.; Goeppert, A.; Prakash, G. K. S. Beyond Oil and Gas: The Methanol Economy;Wiley-VCH:Weinheim, 2009; pp168-173.
(5) Deo, G.;Wachs, I. E. J. Catal. 1994, 146, 323. doi: 10.1006/jcat.1994.1071
(6) Hu, H. C.;Wachs, I. E. J. Phys. Chem. 1995, 99, 10911. doi: 10.1021/j100027a035
(7) Yuan, Y. Z.; Iwasawa, Y. J. Phys. Chem. B 2002, 106, 4441. doi: 10.1021/jp013770l
(8) Liu, H. C.; Iglesia, E. J. Phys. Chem. B 2005, 109, 2155. doi: 10.1021/jp0401980
(9) Liu, H. C.; Iglesia, E. J. Phys. Chem. B 2003, 107, 10840. doi: 10.1021/jp0301554
(10) Tatibouet, J. M. Appl. Catal. A-Gen. 1997, 148, 213. doi: 10.1016/S0926-860X(96)00236-0
(11) Badlani, M.;Wachs, I. E. Catal. Lett. 2001, 75, 137. doi: 10.1023/A:1016715520904
(12) Wachs, I. E. Catal. Today 2005, 100, 79. doi: 10.1016/j.cattod.2004.12.019
(13) Oyama, S. T.; Radhakrishnan, R.; Seman, M.; Kondo, J. N.;Domen, K.; Asakura, K. J. Phys. Chem. B 2003, 107, 1845. doi: 10.1021/jp0220276
(14) Vitry, D.; Morikawa, Y.; Dubois, J. L.; Ueda,W. Appl. Catal. A-Gen. 2003, 251, 411. doi: 10.1016/S0926-860X(03)00381-8
(15) Cavani, F.; Trifiro, F. Catal. Today 1995, 24, 307. doi: 10.1016/0920-5861(95)00051-G
(16) Chen, K. D.; Xie, S. B.; Bell, A. T.; Iglesia, E. J. Catal. 2001,198, 232. doi: 10.1006/jcat.2000.3125
(17) Tsilomelekis, G.; Boghosian, S. J. Phys. Chem. C 2011, 115,2146. doi: 10.1021/jp1098987
(18) Chempath, S.; Zhang, Y. H.; Bell, A. T. J. Phys. Chem. C 2007,111, 1291. doi: 10.1021/jp064741j
(19) Lee, E. L.;Wachs, I. E. J. Phys. Chem. C 2007, 111, 14410. doi: 10.1021/jp0735482
(20) Tsilomelekis, G.; Boghosian, S. Phys. Chem. Chem. Phys. 2012,14, 2216.
(21) Handzlik, J.; Sautet, P. J. Phys. Chem. C 2008, 112, 14456. doi: 10.1021/jp802372e
(22) Liu, H. C.; Cheung, P.; Iglesia, E. J. Catal. 2003, 217, 222.
(23) Christodoulakis, A.; Heracleous, E.; Lemonidou, A. A.;Boghosian, S. J. Catal. 2006, 242, 16. doi: 10.1016/j.jcat.2006.05.024
(24) Li,W. Z.; Huang, H.; Li, H. J.; Zhang,W.; Liu, H. C. Langmuir2008, 24, 8358. doi: 10.1021/la800370r
(25) Hamraoui, K.; Cristol, S.; Payen, E.; Paul, J. F. J. Mol. Struct. - Theochem 2009, 903, 73. doi: 10.1016/j.theochem.2008.09.044
(26) Chen, K. D.; Bell, A. T.; Iglesia, E. J. Catal. 2002, 209, 35. doi: 10.1006/jcat.2002.3620
(27) Liu, H. C.; Cheung, P.; Iglesia, E. J. Phys. Chem. B 2003, 107,4118. doi: 10.1021/jp0221744
(28) Brandhorst, M.; Cristol, S.; Capron, M.; Dujardin, C.; Vezin, H.;Le bourdon, G.; Payen, E. Catal. Today 2006, 113, 34. doi: 10.1016/j.cattod.2005.11.008
(29) Aritani, H.; Fukuda, O.; Miyaji, A.; Hasegawa, S. Appl. Surf. Sci. 2001, 180, 261. doi: 10.1016/S0169-4332(01)00366-X
(30) Tsilomelekis, G.; Christodoulakis, A.; Boghosian, S. Catal. Today 2007, 127, 139. doi: 10.1016/j.cattod.2007.03.026
(31) Zhang, S. H.; Zhang, H. P.; Li,W. Z.; Zhang,W.; Huang, H.;Liu, H. C. Acta Phys. -Chim. Sin. 2010, 26, 1879. [张胜红,张鸿鹏, 李为臻, 张伟, 黄华, 刘海超. 物理化学学报,2010, 26, 1879.] doi: 10.3866/PKU.WHXB20100732
(32) Shannon, I. J.; Maschmeyer, T.; Oldroyd, R. D.; Sankar, G.;Thomas, J. M.; Pernot, H.; Balikdjian, J. P.; Che, M. J. Chem. Soc. Faraday Trans. 1998, 94, 1495. doi: 10.1039/a800054i
(33) Grabowski, R.; Grzybowska, B.; Haber, J.; Sloczynski, J. React. Kinet. Catal. Lett. 1975, 2, 81. doi: 10.1007/BF02060956
(34) Wachs, I. E.; Saleh, R. Y.; Chan, S. S.; Chersich, C. C. Appl. Catal. 1985, 15, 339. doi: 10.1016/S0166-9834(00)81848-5
(35) Blasco, T.; Lopez-Nieto, J. M. Appl. Catal. A-Gen. 1997, 157,117. doi: 10.1016/S0926-860X(97)00029-X
(36) Cavalli, P.; Cavani, F.; Manenti, I.; Trifiro, F. Catal. Today 1987,1, 245. doi: 10.1016/0920-5861(87)80043-3
(37) Kumar, C. P.; Reddy, K. R.; Rao, V. V.; Chary, K. V. R. Green Chem. 2002, 4, 513. doi: 10.1039/b206581a
(38) Olthof, B.; Khodakov, A.; Bell, A. T.; Iglesia, E. J. Phys. Chem. B 2000, 104, 1516. doi: 10.1021/jp9921248
(39) Bronkema, J. L.; Leo, D. C.; Bell, A. T. J. Phys. Chem. C 2007,111, 14530. doi: 10.1021/jp073826x
(40) Bronkema, J. L.; Bell, A. T. J. Phys. Chem. C 2008, 112, 6404.doi: 10.1021/jp7110692
(41) Tanaka, T.; Yamashita, H.; Tsuchitani, R.; Funabiki, T.; Yoshida,S. J. Chem. Soc. Faraday Trans. 1988, 84, 2987. doi: 10.1039/f19888402987
(42) Eckert, H.;Wachs, I. E. J. Phys. Chem. 1989, 93, 6796. doi: 10.1021/j100355a043
(43) Weckhuysen, B. M.; Jehng, J. M.;Wachs, I. E. J. Phys. Chem. B2000, 104, 7382. doi: 10.1021/jp000055n
(44) Busca, G. J. Mol. Catal. 1989, 50, 241.
(45) Gao, X. T.; Bare, S. R.;Weckhuysen, B. M.;Wachs, I. E.J. Phys. Chem. B 1998, 102, 10842. doi: 10.1021/jp9826367
(46) Shapovalov, V.; Metiu, H. J. Phys. Chem. C 2007, 111, 14179.doi: 10.1021/jp074481l
(47) Vining,W. C.; Strunk, J.; Bell, A. T. J. Catal. 2012, 285, 160.doi: 10.1016/j.jcat.2011.09.024
(48) Ganduglia-Pirovano, M. V.; Popa, C.; Sauer, J.; Abbott, H.; Uhl,A.; Baron, M.; Stacchiola, D.; Bondarchuk, O.; Shaikhutdinov,S.; Freund, H. J. J. Am. Chem. Soc. 2010, 132, 2345. doi: 10.1021/ja910574h
(49) Burcham, L. J.;Wachs, I. E. Catal. Today 1999, 49, 467. doi: 10.1016/S0920-5861(98)00442-8
(50) Burcham, L. J.; Badlani, M.;Wachs, I. E. J. Catal. 2001, 203,104. doi: 10.1006/jcat.2001.3312
(51) Bronkema, J. L.; Bell, A. T. J. Phys. Chem. C 2007, 111, 420.doi: 10.1021/jp0653149
(52) Goodrow, A.; Bell, A. T. J. Phys. Chem. C 2007, 111, 14753.doi: 10.1021/jp072627a
(53) Vining,W. C.; Strunk, J.; Bell, A. T. J. Catal. 2011, 281, 222.doi: 10.1016/j.jcat.2011.05.001
(54) Weber, R. S. J. Phys. Chem. 1994, 98, 2999. doi: 10.1021/j100062a042
(55) Kim, H. Y.; Lee, H. M.; Pala, R. G. S.; Metiu, H. J. Phys. Chem. C 2009, 113, 16083. doi: 10.1021/jp903298w
(56) Abbott, H. L.; Uhl, A.; Baron, M.; Lei, Y.; Meyer, R. J.;Stacchiola, D. J.; Bondarchuk, O.; Shaikhutdinov, S.; Freund,H. J. J. Catal. 2010, 272, 82. doi: 10.1016/j.jcat.2010.03.009
(57) Gao, X. T.;Wachs, I. E. Top. Catal. 2002, 18, 243. doi: 10.1023/A:1013842722877
(58) Goodrow, A.; Bell, A. T. J. Phys. Chem. C 2008, 112, 13204.doi: 10.1021/jp801339q
(59) Holstein,W. L.; Machiels, C. J. J. Catal. 1996, 162, 118. doi: 10.1006/jcat.1996.0265
(60) Jackson, S. D.; Hargreaves, J. S. J. Metal Oxide Catalysis;Wiley-VCH:Weinheim, 2009; pp 487-498.
(61) Khaliullin, R. Z.; Bell, A. T. J. Phys. Chem. B 2002, 106, 7832.doi: 10.1021/jp014695h
(62) Dobler, J.; Pritzsche, M.; Sauer, J. J. Am. Chem. Soc. 2005, 127,10861. doi: 10.1021/ja051720e
(63) Gao, X. T.; Bare, S. R.; Fierro, J. L. G.;Wachs, I. E. J. Phys. Chem. B 1999, 103, 618. doi: 10.1021/jp983357m
(64) Gao, X. T.; Fierro, J. L. G.;Wachs, I. E. Langmuir 1999, 15,3169. doi: 10.1021/la981254p
(65) Gao, X. T.;Wachs, I. E. J. Catal. 2000, 192, 18. doi: 10.1006/jcat.2000.2822
(66) Fubini, B.; Bolis, V.; Cavenago, A.; Garrone, E.; Ugliengo, P.Langmuir 1993, 9, 2712. doi: 10.1021/la00034a034
(67) Feng, T.; Vohs, J. M. J. Catal. 2004, 221, 619. doi: 10.1016/j.jcat.2003.10.002
(68) Zhanpeisov, N. U.; Fukumura, H. J. Phys. Chem. C 2007, 111,16941. doi: 10.1021/jp074869g
(69) Eder, D.; Kramer, R. Phys. Chem. Chem. Phys. 2003, 5, 1314.
(70) Strunk, J.; Vining,W. C.; Bell, A. T. J. Phys. Chem. C 2010,114, 16937. doi: 10.1021/jp100104d
(71) Kim, H. Y.; Lee, H. M.; Metiu, H. J. Phys. Chem. C 2010, 114,13736. doi: 10.1021/jp103361v
(72) Vining,W. C.; Goodrow, A.; Strunk, J.; Bell, A. T. J. Catal.2010, 270, 163. doi: 10.1016/j.jcat.2009.12.017
(73) Ross-Medgaarden, E. I.;Wachs, I. E.; Knowles,W. V.; Burrows,A.; Kiely, C. J.;Wong, M. S. J. Am. Chem. Soc. 2009, 131, 680.doi: 10.1021/ja711456c
(74) Masamoto, J.; Iwaisako, T.; Chohno, M.; Kawamura, M.;Ohtake, J.; Matsuzaki, K. J. Appl. Polym. Sci. 1993, 50, 1299.doi: 10.1002/app.1993.070500801
(75) Zhang, Q. D.; Tan, Y. S.; Yang, C. H.; Han, Y. Z. J. Mol. Catal. A-Chem. 2007, 263, 149. doi: 10.1016/j.molcata.2006.08.044
(76) Lambiotte, G. New Process for Continuous Production ofMethylal. CH Patent 688041, 1997.
(77) Satoh, S.; Tanigawa, Y. Process for Producing Methylal. USPatent 6 379 507, 2002.
(78) Yuan, Y. Z.; Liu, H. C.; Imoto, H.; Shido, T.; Iwasawa, Y.J. Catal. 2000, 195, 51. doi: 10.1006/jcat.2000.2990
(79) Yuan, Y. Z.; Shido, T.; Iwasawa, Y. Chem. Commun. 2000, No.15, 1421.
(80) Zhang, Y. H.; Drake, I. J.; Briggs, D. N.; Bell, A. T. J. Catal.2006, 244, 219. doi: 10.1016/j.jcat.2006.09.002
(81) Royer, S.; Secordel, X.; Brandhorst, M.; Dumeignil, F.; Cristol,S.; Dujardin, C.; Capron, M.; Payena, E.; Dubois, J. L. Chem. Commun. 2008, No. 7, 865.
(82) Gornay, J.; Secordel, X.; Tesquet, G.; de Menorval, B.; Cristol,S.; Fongarland, P.; Capron, M.; Duhamel, L.; Payen, E.;Dubois, J. L.; Dumeignil, F. Green Chem. 2010, 12, 1722. doi: 10.1039/c0gc00194e
(83) Fu, Y. C.; Shen, J. Y. Chem. Commun. 2007, No. 21, 2172.
(84) Zhao, H. Y.; Bennici, S.; Shen, J. Y.; Auroux, A. J. Catal. 2010,272, 176. doi: 10.1016/j.jcat.2010.02.028
(85) Zhao, H. Y.; Bennici, S.; Cai, J. X.; Shen, J. Y.; Auroux, A.J. Catal. 2010, 274, 259. doi: 10.1016/j.jcat.2010.07.011
(86) Dunn, J. P.; Jehng, J. M.; Kim, D. S.; Briand, L. E.; Stenger, H.G.;Wachs, I. E. J. Phys. Chem. B 1998, 102, 6212. doi: 10.1021/jp9814247
(87) Guo, H. Q.; Li, D. B.; Jiang, D.; Li,W. H.; Sun, Y. H. Catal. Commun. 2010, 11, 396. doi: 10.1016/j.catcom.2009.11.009
(88) Lu, X. L.; Qin, Z. F.; Dong, M.; Zhu, H. Q.;Wang, G. F.;Zhao, Y. B.; Fan,W. B.;Wang, J. G. Fuel 2011, 90, 1335. doi: 10.1016/j.fuel.2011.01.007
(89) Chen, S.;Wang, S. P.; Ma, X. B.; Gong, J. L. Chem. Commun.2011, No. 47, 9345.
(90) Sun, Q.; Liu, J.W.; Cai, J. X.; Fu, Y. C.; Shen, J. Y. Catal. Commun. 2009, 11, 47. doi: 10.1016/j.catcom.2009.08.010
(91) Zhao, H. Y.; Bennici, S.; Shen, J. Y.; Auroux, A. Appl. Catal. A-Gen. 2010, 385, 224. doi: 10.1016/j.apcata.2010.07.017
(92) Zhao, H. Y.; Bennici, S.; Shen, J. Y.; Auroux, A. J. Therm. Anal. Calorim. 2010, 99, 843. doi: 10.1007/s10973-009-0499-0
(93) Misono, M. Chem. Commun. 2001, No. 13, 1141.
(94) Okuhara, T.; Mizuno, N.; Misono, M. Appl. Catal. A-Gen.2001, 222, 63. doi: 10.1016/S0926-860X(01)00830-4
(95) Damyanova, S.; Cubeiro, M. L.; Fierro, J. L. G. J. Mol. Catal. A-Chem. 1999, 142, 85. doi: 10.1016/S1381-1169(98)00279-9
(96) Liu, H. C.; Bayat, N.; Iglesia, E. Angew. Chem. Int. Edit. 2003,42, 5072. doi: 10.1002/(ISSN)1521-3773
(97) Liu, H. C.; Iglesia, E. J. Catal. 2004, 223, 161.
(98) Guo, H. Q.; Li, D. B.; Xiao, H. C.; Zhang, J. L.; Li,W. H.;Sun, Y. H. Kor. J. Chem. Eng. 2009, 26, 902. doi: 10.1007/s11814-009-0151-5
(99) Nakka, L.; Molinari, J. E.;Wachs, I. E. J. Am. Chem. Soc.2009, 131, 15544. doi: 10.1021/ja904957d
(100) Molinari, J. E.; Nakka, L.; Kim, T.;Wachs, I. E. ACS Catal.2011, 1, 1536. doi: 10.1021/cs2001362
(101) Mol, J. C. Catal. Today 1999, 51, 289. doi: 10.1016/S0920-5861(99)00051-6
(102) Liu, H. C.; Gaigneaux, E. M.; Imoto, H.; Shido, T.; Iwasawa,Y. Appl. Catal. A-Gen. 2000, 202, 251. doi: 10.1016/S0926-860X(00)00539-1
(103) Wachs, I. E.; Deo, G.; Andreini, A.; Vuurman, M. A.; deBoer,M. J. Catal. 1996, 160, 322. doi: 10.1006/jcat.1996.0152
(104) Yuan, Y. Z.; Tsai, K. R.; Liu, H. C.; Iwasawa, Y. Top. Catal.2003, 22, 9. doi: 10.1023/A:1021451309465
(105) Lee, E. L.;Wachs, I. E. J. Phys. Chem. C 2008, 112, 6487. doi: 10.1021/jp076485w
(106) Lacheen, H. S.; Cordeiro, P. J.; Iglesia, E. J. Am. Chem. Soc.2006, 128, 15082. doi: 10.1021/ja065832x
(107) Lacheen, H. S.; Cordeiro, P. J.; Iglesia, E. Chem.-Eur. J. 2007,13, 3048. doi: 10.1002/(ISSN)1521-3765
(108) Nikonova, O. A.; Capron, M.; Fang, G.; Faye, J.; Mamede, A.S.; Jalowiecki-Duhamel, L.; Dumeignil, F.; Seisenbaeva, G. A.J. Catal. 2011, 279, 310. doi: 10.1016/j.jcat.2011.01.028
(109) Tougerti, A.; Cristol, S.; Berrier, E.; Briois, V.; La Fontaine, C.;Villain, F.; Joly, Y. Phys. Rev. B 2012, 85 (12), 125136. doi: 10.1103/PhysRevB.85.125136
(110) Yang, T. J.; Lunsford, J. H. J. Catal. 1987, 103, 55. doi: 10.1016/0021-9517(87)90092-3
(111) Chan, A. S. Y.; Chen,W. H.;Wang, H.; Rowe, J. E.; Madey, T.E. J. Phys. Chem. B 2004, 108, 14643. doi: 10.1021/jp040168x
(112) Liu, J. L.; Zhan, E. S.; Cai,W. J.; Li, J.; Shen,W. J. Catal. Lett.2008, 120, 274. doi: 10.1007/s10562-007-9280-9
(113) Hardcastle, F. D.;Wachs, I. E.; Horsley, J. A.; Via, G. H.J. Mol. Catal. 1988, 46, 15. doi: 10.1016/0304-5102(88)85081-8
(114) Albonetti, S.; Cavani, F.; Trifiro, F. Catal. Rev.-Sci. Eng. 1996,38, 413. doi: 10.1080/01614949608006463
(115) Secordel, X.; Yoboue, A.; Cristol, S.; Lancelot, C.; Capron, M.;Paul, J. F.; Berrier, E. J. Solid State Chem. 2011, 184, 2806.doi: 10.1016/j.jssc.2011.08.002
(116) Zang, L.; Kisch, H. Angew. Chem. Int. Edit. 2000, 39, 3921.doi: 10.1002/(ISSN)1521-3773
(117) Zhan, B. Z.; White, M. A.; Sham, T. K.; Pincock, J. A.; Doucet,R. J.; Rao, K. V. R.; Robertson, K. N.; Cameron, T. S. J. Am. Chem. Soc. 2003, 125, 2195. doi: 10.1021/ja0282691
(118) Zhan, B. Z.; White, M. A.; Pincock, J. A.; Robertson, K. N.;Cameron, T. S.; Sham, T. K. Can. J. Chem. -Rev. Can. Chim.2003, 81, 764. doi: 10.1139/v03-060
(119) Li,W. Z.; Liu, H. C.; Iglesia, E. J. Phys. Chem. B 2006, 110,23337. doi: 10.1021/jp0648689
(120) Lee, J. S.; Kim, J. C.; Kim, Y. G. Appl. Catal. 1990, 57, 1. doi: 10.1016/S0166-9834(00)80720-4
(121) Jenner, G. Appl. Catal. A-Gen. 1995, 121, 25.
(122) Huang, H.; Li,W. Z.; Liu, H. C. Catal. Today 2012, 183, 58.doi: 10.1016/j.cattod.2011.05.021
(123) Lichtenberger, J.; Lee, D.; Iglesia, E. Phys. Chem. Chem. Phys.2007, 9, 4902.
(124) Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Baumer,M. Science 2010, 327, 319. doi: 10.1126/science.1183591
(125) Zhan, B. Z.; Iglesia, E. Angew. Chem. Int. Edit. 2007, 46, 3697.doi: 10.1002/(ISSN)1521-3773
(126) Yu, H.; Zeng, K.; Fu, X. B.; Zhang, Y.; Peng, F.;Wang, H. J.;Yang, J. J. Phys. Chem. C 2008, 112, 11875. doi: 10.1021/jp804003g

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 247-255.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[4] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[5] GOLMOHAMMADI Hassan, DASHTBOZORGI Zahra, KHOOSHECHIN Sajad. Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1160-1170.
[6] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[7] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[8] HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1785-1794.
[9] TIAN Chun-Xia, YANG Jun-Shuai, LI Li, ZHANG Xiao-Hua, CHEN Jin-Hua. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1473-1481.
[10] ZHAO Jun-Feng, SUN Xiao-Li, HUANG Xu-Ri, LI Ji-Lai. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1175-1182.
[11] LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. Chim. Sin., 2016, 32(4): 950-960.
[12] CHENG Xiao-Meng, LI Yu, CHEN Zong, LI Hong-Ping, ZHENG Xiao-Fang. A Comparative Study on theNMR Relaxation of Methanol in Sub-and Super-Critical Mixtures of CO2 and Methanol[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2671-2677.
[13] HU Si, ZHANG Qing, YIN Qi, ZHANG Ya-Fei, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1374-1382.
[14] ZHAO Jun-Feng, SUN Xiao-Li, LI Ji-Lai, HUANG Xu-Ri. Theoretical Study of Methanol C―H and O―H Bond Activation by PtRu Clusters[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1077-1085.
[15] QIAN Hai-Cheng, KANWAL Shahid, JIA Qing-Zhu, WANG Qiang, JI Hui-Fen, ZHU Zhi-Chen, XIA Shu-Qian, MA Pei-Sheng. Norm Index-Based Quantitative Structure-Activity Relationship to Predict β-Cyclodextrin Complex Binding Constants[J]. Acta Phys. Chim. Sin., 2015, 31(5): 893-898.