Please wait a minute...
Acta Phys. Chim. Sin.
CATALYSIS AND SURFACE SCIENCE     
A Sorbent Concentration-Dependent Langmuir Isotherm
ZHAO Ling-Xi1, SONG Shu-E2, DU Na2, HOU Wan-Guo2,3
1 Environment Research Institute, Shandong University, Jinan 250100, P. R. China;
2 Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Shandong University, Jinan 250100, P. R. China;
3 State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong Province, P. R. China
Download:   PDF(1742KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Batch adsorption experiments of Pb(II) and Cu(II) on kaolinite as a function of kaolinite concentration were conducted. An obvious sorbent concentration effect (Cs-effect) was observed; namely, the adsorption isotherm declines as sorbent concentration (Cs) increases. The experimental data were fitted to the classic Langmuir model. The results showed that the classic Langmuir model could adequately describe the adsorption equilibria of Pb(II) and Cu(II) on kaolinite for a given Cs value, but could not adequately predict the Cs-effect observed in the adsorption systems. We proposed a surface component activity (SCA) model. It suggests that the interactions between the sorbent particles exist in the real adsorption system, and the activity coefficient of the adsorption sites of the sorbent surface is a function of Cs. Based on the SCA model, a Cs-dependent Langmuir (Langmuir-SCA) isotherm was derived. The applicability of the Langmuir-SCA isotherm was examined with the experimental adsorption data of Pb(II) and Cu(II) on kaolinite, as well as Cd(II) and Zn(II) on vermiculite and Pb(II) on coffee reported in the literature. The results showed that the Langmuir-SCA equation could describe the Cs-effect observed in adsorption experiments. The two intrinsic parameters of the Langmuir-SCA isotherm, the thermodynamic equilibrium constant (Keq) and the characteristic saturation adsorption capacity (Γm0), are independent of Cs and can be simulated with experimental adsorption data.



Key wordsAdsorption      Sorbent concentration effect      Langmuir equation      Pb(II)      Cu(II)     
Received: 25 May 2012      Published: 25 September 2012
MSC2000:  O647  
Fund:  

The project was supported by the National Natural Science Foundation of China (21173135), Specialized Research Fund for the Doctoral Program of Higher Education of China (20110131130008), Taishan Scholar Foundation of Shandong Province, China (ts20070713), and Graduate Independent Innovation Foundation of Shandong University, China (yzc10112).

Cite this article:

ZHAO Ling-Xi, SONG Shu-E, DU Na, HOU Wan-Guo. A Sorbent Concentration-Dependent Langmuir Isotherm. Acta Phys. Chim. Sin., 2012, 28(12): 2905-2910.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201209251     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I12/2905

(1) Voice, T. C.;Weber,W. J. Environ. Sci. Technol. 1985, 19, 789.doi: 10.1021/es00139a004
(2) O'Connor, D. J.; Connolly, J. P. Water Res. 1980, 14, 1517. doi: 10.1016/0043-1354(80)90018-4
(3) Voice, T. C.; Rice, C. P.;Weber,W. J. Environ. Sci. Technol.1983, 17, 513. doi: 10.1021/es00115a004
(4) Pan, G.; Liss, P. S. J. Colloid Interface Sci. 1998, 201, 71. doi: 10.1006/jcis.1998.5396
(5) Gschwend, P. M.;Wu, S. C. Environ. Sci. Technol. 1985, 19, 90.doi: 10.1021/es00131a011
(6) Cohen-Stuart, M. A.; Scheutjens, J. M.; Fleer, G. J. J. Polymer Sci.: Polymer Physics Ed. 1980, 18, 559. doi: 10.1002/pol.1980.180180315
(7) Nyffeler, U. P.; Li, Y. H.; Santschi, P. H. Geochim. Cosmochim. Acta 1984, 48, 1513. doi: 10.1016/0016-7037(84)90407-1
(8) Grolimund, D.; Borkovec, M.; Federer, P.; Sticher, H. Environ. Sci. Technol. 1995, 29, 2317. doi: 10.1021/es00009a025
(9) DiToro, D. M.; Mahony, J. D.; Kirchgraber, P. R.; O'Byrne, A.L.; Pasquale, L. R.; Piccirilll, D. C. Environ. Sci. Technol. 1986,20, 55. doi: 10.1021/es00143a006
(10) Pan, G.; Liss, P. S.; Krom, M. D. Colloids Surf. A 1999, 151,127. doi: 10.1016/S0927-7757(98)00636-0
(11) Helmy, A. K.; Ferreiro, E. A.; Bussetti, S. G. J. Colloid Interface Sci. 2000, 225, 398. doi: 10.1006/jcis.2000.6758
(12) Chang, T.W.;Wang, M. K. Chemosphere 2002, 48, 419. doi: 10.1016/S0045-6535(02)00053-X
(13) Wu, X. F.; Hu, Y. L.; Zhao, F.; Huang, Z. Z.; Lei, D. J. Environ. Sci. 2006, 18, 1167. doi: 10.1016/S1001-0742(06)60057-0
(14) Lu, H. J.; Luan, M. T.; Zhang, J. L.; Yu, Y. X. J. China Univ. Mining Technol. 2008, 18, 125. doi: 10.1016/S1006-1266(08)60027-9
(15) Utomo, H. D.; Hunter, K. A. Bioresour. Technol. 2010, 101,1482. doi: 10.1016/j.biortech.2009.06.094
(16) McKinley, J. P.; Jenne, E. A. Environ. Sci. Technol. 1991, 25,2082. doi: 10.1021/es00024a015
(17) Fehse, K. U.; Borg, H.; Sokau, E.; Pilchowski, K.; Luckner, L.Water Air Soil Pollut. 2010, 210, 211. doi: 10.1007/s11270-009-0243-1
(18) Zhao, L. X.; Hou,W. G. Colloids Surf. A 2012, 396, 29. doi: 10.1016/j.colsurfa.2011.12.026
(19) Hermosin, M. C.; Pavlovic, L.; Ulibarri, M. A.; Cornejo, J.Water Res. 1996, 30, 171. doi: 10.1016/0043-1354(95)00088-3
(20) Ma, L.; Xu, R. K.; Jiang, J. J. Environ. Sci. 2010, 22, 689. doi: 10.1016/S1001-0742(09)60164-9
(21) Ding, P.; Huang, K. L.; Yang, H.; Li, G. Y.; Liu, Y. F. J. Cent. South Univ. Technol. 2010, 17, 277. doi: 10.1007/s11771-010-0042-2
(22) Langmuir, I. Am. Chem. Soc. 1918, 40, 1361. doi: 10.1021/ja02242a004
(23) Iraolagoitia, X. L.; Martini, M. F. Colloids Surf. B 2010, 76,215. doi: 10.1016/j.colsurfb.2009.10.037
(24) Kim, J. Y.; Shin, M. C.; Park, J. R.; Nam, K. J. Mater. Cycles Waste Manage. 2003, 5, 55. doi: 10.1007/s101630300009
(25) Hameed, B. H.; El-Khaiary, M. I. J. Hazard. Mater. 2008, 154,639. doi: 10.1016/j.jhazmat.2007.10.081
(26) Xu, C.; Li,W.; Pan, G. Acta Phys. -Chim. Sin. 2009, 25, 1737.[徐从, 李薇, 潘纲. 物理化学学报, 2009, 25, 1737.]doi: 10.3866/PKU.WHXB20090815

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[3] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[4] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[6] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[7] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[8] CAO Shi, ZENG Li-Li, XIE Jing, WAN Shi-Gang, Li Dan, ZHANG Hui. Supramolecular Helical Chirality of Schiff Base Copper(Ⅱ) Complexes and Their Chiroptical Spectroscopy[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2480-2490.
[9] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[10] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[11] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[12] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[13] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2264-2270.
[14] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2133-2145.
[15] JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1933-1940.