Please wait a minute...
Acta Phys. Chim. Sin.
ELECTROCHEMISTRY AND NEW ENERGY     
Synthesis and Characteristics of Pt/graphene by Co-Reduction Method for Oxygen Reduction Reactions
WANG Wan-Li, MA Zi-Feng
Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
Download:   PDF(1317KB) Export: BibTeX | EndNote (RIS)      

Abstract  

40% (w) Pt/graphene composites were prepared by sodium borohydride chemical coreduction, and were subsequently used as an electrocatalyst for oxygen reduction reactions. The electrocatalytic activity and stability was evaluated by cyclic voltammetry. The results indicated that the initial activity of Pt/graphene was lower than that of Pt/C due to the oxygen diffusion inhibition; however, the Pt/graphene showed superior durability characteristics. Degradation tests showed a 50% degradation of Pt/ graphene, which was substantially less than that of Pt/C (79%). X-ray diffraction and transmission electron microscope results showed that the composite formed strong interactions between the platinum nanoparticles and the graphene supports. The graphene supports may also prevent the graphene sheets from folding or re-stacking, which would hinder platinum nanoparticles' aggregation. The performance of a single cell was also tested, confirming an improvement in durability.



Key wordsGraphene      Co-reduction method      Electrocatalyst      Oxygen reduction reaction      Proton exchange membrane fuel cell     
Received: 05 July 2012      Published: 25 September 2012
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (21073120, 21176155) and Science and Technology Foundation of Shanghai Municipality, China (10JC1406900).

Cite this article:

WANG Wan-Li, MA Zi-Feng. Synthesis and Characteristics of Pt/graphene by Co-Reduction Method for Oxygen Reduction Reactions. Acta Phys. Chim. Sin., 2012, 28(12): 2879-2884.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201209252     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I12/2879

(1) Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.;Wang, C.; Chen, M.;Chen, Y. The Journal of Physical Chemistry C 2009, 113 (30),13103. doi: 10.1021/jp902214f
(2) Lu, X. J.; Dou, H.; Yang, S. D.; Hao, L.; Zhang, F.; Zhang, X.G. Acta Phys. -Chim. Sin. 2011, 27 (10), 2333. [卢向军,窦辉, 杨苏东, 郝亮, 张方, 张校刚. 物理化学学报,2011, 27 (10), 2333.] doi: 10.3866/PKU.WHXB20111022
(3) Guo, P.; Song, H.; Chen, X. Electrochem. Commun. 2009, 11 (6), 1320. doi: 10.1016/j.elecom.2009.04.036
(4) Liang, M.; Zhi, L. J. Mater. Chem. 2009, 19 (33), 5871. doi: 10.1039/b901551e
(5) Xu, K.; Shen, L. F.; Mi, C. H.; Zhang, X. G. Acta Phys. -Chim. Sin. 2012, 28 (1), 105. [徐科, 申来法, 米常焕, 张校刚.物理化学学报, 2012, 28 (1), 105.] doi: 10.3866/PKU.WHXB201228105
(6) Yang, X.W.; He, Y. S.; Liao, X. Z.; Ma, Z. F. Acta Phys. -Chim. Sin. 2011, 27 (11), 2583. [杨晓伟, 何雨石, 廖小珍, 马紫峰.物理化学学报, 2011, 27 (11), 2583.] doi: 10.3866/PKU.WHXB20111123
(7) Li, Y.; Tang, L.; Li, J. Electrochem. Commun. 2009, 11 (4), 846.doi: 10.1016/j.elecom.2009.02.009
(8) Si, Y.; Samulski, E. T. Chem. Mater. 2008, 20 (21), 6792. doi: 10.1021/cm801356a
(9) Li, Y. X.;Wei, Z. D.; Zhao, Q. L.; Ding,W.; Zhang, Q.; Chen, S.G. Acta Phys. -Chim. Sin. 2011, 27 (4), 858. [李云霞, 魏子栋,赵巧玲, 丁炜, 张骞, 陈四国. 物理化学学报, 2011, 27 (4),858.] doi: 10.3866/PKU.WHXB20110411
(10) Castro Neto, A. H.; Kotov, V. N.; Nilsson, J.; Pereira, V. M.;Peres, N. M. R.; Uchoa, B. Solid State Commun. 2009, 149 (27-28), 1094. doi: 10.1016/j.ssc.2009.02.040
(11) Geim, A. K. Science 2009, 324 (5934), 1530. doi: 10.1126/science.1158877
(12) Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.;Geim, A. K. Reviews of Modern Physics 2009, 81 (1), 109. doi: 10.1103/RevModPhys.81.109
(13) Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj,A. Angewandte Chemie-International Edition 2009, 48 (42),7752. doi: 10.1002/anie.v48:42
(14) Barbir, F. PEM Fuel Cells —— Theory and Practice; ElsevierAcademic Press: Burlington, 2005.
(15) Baughman, R. H.; Zakhidov, A. A.; De Heer,W. A. Science2002, 297 (5582), 787. doi: 10.1126/science.1060928
(16) Chen, H.; Müller, M. B.; Gilmore, K. J.;Wallace, G. G.; Li, D.Adv. Mater. 2008, 20 (18), 3557. doi: 10.1002/adma.200800757
(17) Kou, R.; Shao, Y.;Wang, D.; Engelhard, M. H.; Kwak, J. H.;Wang, J.; Viswanathan, V. V.;Wang, C.; Lin, Y.;Wang, Y.;Aksay, I. A.; Liu, J. Electrochem. Commun. 2009, 11 (5), 954.doi: 10.1016/j.elecom.2009.02.033
(18) Huffman, G. P.; Shah, N.;Wang, Y.; Huggins, F. E. Prepr. Pap. -Am. Chem. Soc., Div. Fuel Chem. 2004, 49 (2), 731.
(19) Kovtyukhova, N. I. Chem. Mater. 1999, 11 (3), 771. doi: 10.1021/cm981085u
(20) Fournier, J.; Faubert, G.; Tilquin, J. Y.; Cote, R.; Guay, D.;Dodelet, J. P. J. Electrochem. Soc. 1997, 144 (1), 145. doi: 10.1149/1.1837377
(21) Gasteiger, H. A.; Panels, J. E.; Yan, S. G. J. Power Sources2004, 127 (1-2), 162. doi: 10.1016/j.jpowsour.2003.09.013
(22) Carmo, M.; Paganin, V. A.; Rosolen, J. M.; Gonzalez, E. R.J. Power Sources 2005, 142 (1-2), 169. doi: 10.1016/j.jpowsour.2004.10.023
(23) Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.;Saville, D. A.; Aksay, I. A. The Journal of Physical Chemistry B2006, 110 (17), 8535. doi: 10.1021/jp060936f
(24) McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.;Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car,R.; Prud'homme, R. K.; Aksay, I. A. Chem. Mater. 2007, 19 (18), 4396. doi: 10.1021/cm0630800
(25) Climent, V.; Markovi?, N. M.; Ross, P. N. The Journal of Physical Chemistry B 2000, 104 (14), 3116.
(26) Takenaka, S.; Matsumori, H.; Matsune, H.; Tanabe, E.; Kishida,M. J. Electrochem. Soc. 2008, 155 (9), B929.
(27) Cho, Y. H.; Park, H. S.; Cho, Y. H.; Jung, D. S.; Park, H. Y.;Sung, Y. E. J. Power Sources 2007, 172 (1), 89. doi: 10.1016/j.jpowsour.2007.01.067
(28) Wang, C.;Waje, M.;Wang, X.; Tang, J. M.; Haddon, R. C.; Yan,Y. Nano Lett. 2003, 4 (2), 345.
(29) Chen, Z.;Waje, M.; Li,W.; Yan, Y. Angew. Chem. 2007, 119 (22), 4138. doi: 10.1002/ange.200700894
(30) Rochefort, A.; Yang, D. Q.; Sacher, E. Carbon 2009, 47 (9),2233. doi: 10.1016/j.carbon.2009.04.013

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] SHEN Hai-Bo, JIANG Hao, LIU Yi-Si, HAO Jia-Yu, LI Wen-Zhang, LI Jie. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1811-1821.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[4] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[6] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[7] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[8] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[9] ZHOU Yang, CHENG Qing-Qing, HUANG Qing-Hong, ZOU Zhi-Qing, YAN Liu-Ming, YANG Hui. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1429-1435.
[10] ZHAI Xiao, DING Yi. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1366-1378.
[11] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[12] WANG Jun, WEI Zi-Dong. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(5): 886-902.
[13] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[14] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[15] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.