Please wait a minute...
Acta Phys. Chim. Sin.
ELECTROCHEMISTRY AND NEW ENERGY     
P123-Assisted Rheological Phase Reaction Synthesis and Electrochemical Performance of Li3V2(PO4)3/C Cathode
YUAN Zhi-Hong, MA Jun, CHEN Xing, LIU Kai-Yu
College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, P. R. China
Download:   PDF(1171KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A monoclinic Li3V2(PO4)3/C cathode has been synthesized for use in lithium ion battery applications via a P123-assisted rheological phase reaction (RPR) method. Li3V2(PO4)3/C composite materials were prepared from a mixture of V2O5, LiH2PO4, LiOH, citric acid, and triblock copolymer surfactant P123. The composite material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The electrochemical performance was tested by Galvanostatic charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The P123-assisted Li3V2(PO4)3/C assumes a pure monoclinic crystal structure and exhibits a high initial discharge capacity of 128.9 mAh·g-1, which only decreases by 0.9% of its initial value after 50 cycles at 0.1C between 3.0 and 4.3 V. Moreover, the cathode displays good fast rate performance, displaying discharge capacities of 128.2, 121.3, and 109.1 mAh·g-1 and capacity retentions after 50 charge-discharge cycles of 99.1%, 96.9%, and 90.7% at rates of 1C, 10C, and 25C, respectively. The introduction of the triblock copolymer surfactant P123 to the RPR system is attributed to the excellent electrochemical performance. It acts as a surfactant as well as an organic carbon source, and forms a carbon network in the particle surface, which helps improve the material conductivity rate, and reduce the charge transfer resistance and electrode polarity effects during the charge-discharge process.



Key wordsLithium ion battery      Cathode material      Li3V2(PO4)3      Rheological phase reaction      Triblock copolymer surfactant P123     
Received: 29 July 2012      Published: 25 September 2012
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (21071153, 20976198).

Cite this article:

YUAN Zhi-Hong, MA Jun, CHEN Xing, LIU Kai-Yu. P123-Assisted Rheological Phase Reaction Synthesis and Electrochemical Performance of Li3V2(PO4)3/C Cathode. Acta Phys. Chim. Sin., 2012, 28(12): 2898-2904.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201209253     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I12/2898

(1) Huang, H.; Faulkner, T.; Barker, J.; Saidi, M. Y. J. Power Sources 2009, 189, 748. doi: 10.1016/j.jpowsour.2008.08.024
(2) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B.J. Eletrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571
(3) Yin, S. C.; Grondey, H.; Strobel, P.; Anne, M.; Nazar, L. F. J. Am. Chem. Soc. 2003, 125, 10402. doi: 10.1021/ja034565h
(4) Yin, S. C.; Strobel, P. S.; Grondey, H.; Nazar, L. F. Chem. Mater.2004, 16, 1456. doi: 10.1021/cm034802f
(5) Yin, S. C.; Grondey, H.; Strobel, P.; Huang, H.; Nazar, L. F.J. Am. Chem. Soc. 2003, 125, 326. doi: 10.1021/ja028973h
(6) Cahill, L. S.; Chapman, R. P.; Britten, J. F.; Goward, G. R.J. Phys. Chem. B 2006, 110, 7171. doi: 10.1021/jp057015+
(7) Qiao, Y. Q.; Tu, J. P.; Xiang, J. Y.;Wang, X. L.; Mai, Y. J.;Zhang, D.; Liu,W. L. Electrochim. Acta 2011, 56, 4139. doi: 10.1016/j.electacta.2011.01.109
(8) Nagamine, K.; Honma, T.; Komatsu, T. J. Power Sources 2011,196, 9618. doi: 10.1016/j.jpowsour.2011.06.094
(9) Chen, Z. Y.; Dai, C. S.;Wu, G.; Nelson, M.; Hu, X. G.; Zhang,R. X.; Liu, J. S.; Xia, J. C. Electrochim. Acta 2010, 55, 8595.doi: 10.1016/j.electacta.2010.07.068
(10) Rui, X. H.; Sim, D. H.;Wong, K. M.; Zhu, J. X.; Liu,W. L.; Xu,C.; Tan, H. T.; Xiao, N.; Hng, H. H.; Lim, T. M.; Yan, Q. Y.J. Power Sources 2012, 214, 171. doi: 10.1016/j.jpowsour.2012.03.113
(11) Kuang, Q.; Zhao, Y. M.; Liang, Z. Y. J. Power Sources 2011,196, 10169. doi: 10.1016/j.jpowsour.2011.08.044
(12) Yuan,W.; Yan, J.; Tang, Z. Y.; Sha, O.;Wang, J. M.; Mao,W. F.;Ma, L. Electrochim. Acta 2012, 72, 138. doi: 10.1016/j.electacta.2012.04.030
(13) Fu, P.; Zhao, Y. M.; Dong, Y. Z.; Hou, X. M. J. Phys. Chem. Solids 2010, 71, 194. doi: 10.1016/j.jpcs.2009.11.003
(14) Cong, C. J.; Lei, L.; Li, J. C.; Fan, L. X.; Zhang, K. L.Nanotechnology 2005, 16, 981. doi: 10.1088/0957-4484/16/6/060
(15) Liang, Y. G.; Han, X. Y.; Zhou, X.W.; Sun, J. T.; Zhou, Y. H.Electrochem. Commun. 2007, 9, 965.
(16) Xiong, L. Z.; He, Z. Q. Acta Phys. -Chim. Sin. 2010, 26, 573. [熊利芝, 何则强. 物理化学学报, 2010, 26, 573.] doi: 10.3866/PKU.WHXB20100303
(17) Chu, D. B.; Li, Y.; Song, Q.; Zhou, Y. Acta Phys. -Chim. Sin.201l, 27, 1863. [褚道葆, 李艳, 宋奇, 周莹. 物理化学学报, 201l, 27, 1863.] doi: 10.3866/PKU.WHXB20110807
(18) Li, L.; Li, G. H.;Wang, S. Q.; Feng, C. Q. Chin. J. Inorg. Chem. 2010, 26, 126. [李丽, 李国华, 王石泉, 冯传启. 无机化学学报, 2010, 26, 126.]
(19) Wu, Q.; Li,W. R.; Cheng, Y.; Jiang, Z. Y. Mater. Chem. Phys.2005, 91, 463. doi: 10.1016/j.matchemphys.2004.12.011
(20) Rui, X. H.; Lia, C.; Liu, J.; Cheng, T.; Chen, C. H. Electrochim. Acta 2010, 55, 6761. doi: 10.1016/j.electacta.2010.05.093
(21) Shin, H. C.; Cho,W. I.; Jang, H. J. Power Sources 2006, 159,1383. doi: 10.1016/j.jpowsour.2005.12.043
(22) Guo, X. D.; Zhong, B. H.; Song, Y.; Tang, Y.; Zhao, H. C. Rare Metal Materials and Engineering 2011, 40, 130. [郭孝东, 钟本和, 宋杨, 唐艳, 赵浩川. 稀有金属材料与工程, 2011,40, 130.]
(23) Cao, Y. B.; Duan, J. G.; Jiang, F.; Hu, G. R.; Peng, Z. D.; Du, K.Acta Phys. -Chim. Sin. 2012, 28, 1183. [曹雁冰, 段建国,姜锋, 胡国荣, 彭忠东, 杜柯. 物理化学学报, 2012, 28,1183.] doi: 10.3866/PKU.WHXB201202221
(24) Yin, S. C.; Strobel, P.; Grondey, H.; Nazar, L. F. Chem. Mater.2004, 16, 1456. doi: 10.1021/cm034802f
(25) Fu, P.; Zhao, Y. M.; Dong, Y. Z.; An, X. N.; Shen, G. P.Electrochim. Acta 2006, 52, 1003. doi: 10.1016/j.electacta.2006.06.039
(26) Shenouda, A. Y.; Murali, K. R. J. Power Sources 2008, 176,332. doi: 10.1016/j.jpowsour.2007.10.061
(27) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications;Wiley: New York, 1980; p 328.
(28) Prosini, P. P.; Lisi, M., Zane, D.; Pasquali, M. Solid State Ionics2002, 148, 45. doi: 10.1016/S0167-2738(02)00134-0

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[3] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2261-2267.
[4] LI Ya-Dong, DENG Yu-Feng, PAN Zhi-Yi, WEI Yin-Ping, ZHAO Shi-Xi, GAN Lin. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2293-2300.
[5] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(1): 211-241.
[6] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[7] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1866-1879.
[8] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.
[9] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1489-1494.
[10] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1056-1061.
[11] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. Chim. Sin., 2016, 32(3): 717-722.
[12] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. Chim. Sin., 2016, 32(2): 573-580.
[13] ZHU Shou-Pu, WU Tian, SU Hai-Ming, QU Shan-Shan, XIE Yong-Juan, CHEN Ming, DIAO Guo-Wang. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2737-2744.
[14] SUN Xiao-Fei, XU You-Long, ZHENG Xiao-Yu, MENG Xiang-Fei, DING Peng, REN Hang, LI Long. Triple-Cation-Doped Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1513-1520.
[15] SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1527-1534.