Please wait a minute...
Acta Phys. -Chim. Sin.
ELECTROCHEMISTRY AND NEW ENERGY     
Optimizing the Hydrothermal Synthesis of Micro-Sized Olivine LiFePO4
SUN Xiao-Fei1,2, XU You-Long1,2, LIU Yang-Hao3, LI Lu1,2
1 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, P. R. China;
2 International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049, P. R. China;
3 Department of Chemistry, Xi’an Jiaotong University, Xi’an 710061, P. R. China
Download:   PDF(2891KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The low tap density of LiFePO4 is hindering the energy and power density of lithium-ion batteries in portable electronics, electric vehicles, and stationary electricity storage applications. As part of our work to investigate the pathological mechanism of performance degradation in large particle LiFePO4, micro-sized pristine LiFePO4 without modifications, such as surface coating or bulk doping, was first prepared hydrothermally by optimizing the synthesis parameters in this work. The influences of precursor concentration, solution pH, hydrothermal temperature, and heating time on the phase structure, particle size, and morphology of the products were systematically investigated. It was found that the particle size of LiFePO4 increases with decreasing pH value, increasing precursor concentration, increasing hydrothermal temperature, and increasing heating time during hydrothermal synthesis. The performance degradation of large particle LiFePO4 was demonstrated by these intrinsic samples. The specific discharge capacity decreased from 152 to 80 mAh·g-1 at 0.1C rate when the particle size was increased from 0.7 to 16.5 μm. Moreover, less capacities were retained after 100 cycles at 1C rate for larger particle materials. Finally, the optimized LiFePO4 with a distorted diamond shape was prepared for later investigation of the plausible mechanism of performance degradation in large particle LiFePO4. Its electrochemical performance was preliminarily discussed, and will need to be improved in future to obtain practical high energy/power density LiFePO4 cathodes for lithium-ion batteries.



Key wordsLithium iron phosphate      Hydrothermal synthesis      Micro-sized particles      Performance degradation      Cathode material      Lithium-ion battery     
Received: 03 July 2012      Published: 27 September 2012
MSC2000:  O646  
Cite this article:

SUN Xiao-Fei, XU You-Long, LIU Yang-Hao, LI Lu. Optimizing the Hydrothermal Synthesis of Micro-Sized Olivine LiFePO4. Acta Phys. -Chim. Sin., 2012, 28(12): 2885-2892.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201209271     OR     http://www.whxb.pku.edu.cn/Y2012/V28/I12/2885

(1) Whittingham, M. S. Chem. Rev. 2004, 104, 4271. doi: 10.1021/cr020731c
(2) Yang, Z.; Liu, J.; Baskaran, S.; Imhoff, C.; Holladay, J. D.Journal of the Minerals, Metals and Materials Society 2010, 62,14.
(3) Ozawa, K. Solid State Ionics 1994, 69, 212. doi: 10.1016/0167-2738(94)90411-1
(4) Ellis, B. L.; Lee, K. T.; Nazar, L. F. Chem. Mater. 2010, 22, 691.doi: 10.1021/cm902696j
(5) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B.J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571
(6) Jugovic, D.; Uskokovic, D. J. Power Sources 2009, 190, 538.doi: 10.1016/j.jpowsour.2009.01.074
(7) Franger, S.; Le Cras, F.; Bourbon, C.; Rouault, H. J. Power Sources 2003, 119-121, 252.
(8) Cabana, J.; Shirakawa, J.; Chen, G. Y.; Richardson, T. J.; Grey,C. P. Chem. Mater. 2010, 22, 1249. doi: 10.1021/cm902714v
(9) Ong, S. P.;Wang, L.; Kang, B.; Ceder, G. Chem. Mater. 2008,20, 1798. doi: 10.1021/cm702327g
(10) Recham, N.; Casas-Cabanas, M.; Cabana, J.; Grey, C. P.; Jumas,J. C.; Dupont, L.; Armand, M.; Tarascon, J. M. Chem. Mater.2008, 20, 6798. doi: 10.1021/cm801817n
(11) Zhou, F.; Maxisch, T.; Ceder, G. Phys. Rev. Lett. 2006, 97, 4.
(12) Yamada, A.; Koizumi, H.; Nishimura, S. I.; Sonoyama, N.;Kanno, R.; Yonemura, M.; Nakamura, T.; Kobayashi, Y. Nat. Mater. 2006, 5, 357. doi: 10.1038/nmat1634
(13) Delacourt, C.; Poizot, P.; Tarascon, J. M.; Masquelier, C. Nat. Mater. 2005, 4, 254. doi: 10.1038/nmat1335
(14) Kang, B.; Ceder, G. Nature 2009, 458, 190. doi: 10.1038/nature07853
(15) Morgan, D.; Van der Ven, A.; Ceder, G. Electrochem. Solid- State Lett. 2004, 7, A30.
(16) Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. Chem. Mater. 2005, 17, 5085. doi: 10.1021/cm050999v
(17) Nishimura, S. I.; Kobayashi, G.; Ohoyama, K.; Kanno, R.;Yashima, M.; Yamada, A. Nat. Mater. 2008, 7, 707. doi: 10.1038/nmat2251
(18) Kobayashi, G.; Nishimura, S. I.; Park, M. S.; Kanno, R.;Yashima, M.; Ida, T.; Yamada, A. Adv. Funct. Mater. 2009, 19,395. doi: 10.1002/adfm.v19:3
(19) Gibot, P.; Casas-Cabanas, M.; Laffont, L.; Levasseur, S.;Carlach, P.; Hamelet, S.; Tarascon, J. M.; Masquelier, C. Nat. Mater. 2008, 7, 741. doi: 10.1038/nmat2245
(20) Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Nano Lett. 2010,10, 4123. doi: 10.1021/nl1023595
(21) Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C.Electrochem. Solid-State Lett. 2006, 9, A352.
(22) Herle, P. S.; Ellis, B.; Coombs, N.; Nazar, L. F. Nat. Mater.2004, 3, 147. doi: 10.1038/nmat1063
(23) Herstedt, M.; Stjerndahl, M.; Nytén, A.; Gustafsson, T.;Rensmo, H.; Siegbahn, H.; Ravet, N.; Armand, M.; Thomas, J.O.; Edström, K. Electrochem. Solid-State Lett. 2003, 6, A202.
(24) Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1,123. doi: 10.1038/nmat732
(25) Oh, S.W.; Bang, H. J.; Myung, S. T.; Bae, Y. C.; Lee, S. M.;Sun, Y. K. J. Electrochem. Soc. 2008, 155, A414.
(26) Chen, J.; Vacchio, M. J.;Wang, S.; Chernova, N.; Zavalij, P. Y.;Whittingham, M. S. Solid State Ionics 2008, 178, 1676. doi: 10.1016/j.ssi.2007.10.015
(27) Yang, S.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Commun. 2001, 3, 505. doi: 10.1016/S1388-2481(01)00200-4
(28) Chen, G.; Song, X.; Richardson, T. J. J. Electrochem. Soc. 2007,154, A627.
(29) Zhao, H. C.; Song, Y.; Guo, X. D.; Zhong, B. H.; Dong, J.; Liu,H. Acta Phys. -Chim. Sin. 2011, 27, 2347. [赵浩川, 宋杨,郭孝东, 钟本和, 董静, 刘恒. 物理化学学报, 2011, 27,2347.] doi: 10.3866/PKU.WHXB20110905
(30) Fisher, C. A. J.; Islam, M. S. J. Mater. Chem. 2008, 18, 1209.doi: 10.1039/b715935h
(31) Chen, G.; Song, X.; Richardson, T. J. Electrochem. Solid-State Lett. 2006, 9, A295.
(32) Yu, D. Y.W.; Donoue, K.; Kadohata, T.; Murata, T.; Matsuta, S.;Fujitani, S. J. Electrochem. Soc. 2008, 155, A526.
(33) Wang, L.; Zhou, F.; Meng, Y. S.; Ceder, G. Phys. Rev. B 2007,76, 165435. doi: 10.1103/PhysRevB.76.165435
(34) Dokko, K.; Koizumi, S.; Kanamura, K. Chem. Lett. 2006, 35,338. doi: 10.1246/cl.2006.338
(35) Ellis, B.; Kan,W. H.; Makahnouk,W. R. M.; Nazar, L. F.J. Mater. Chem. 2007, 17, 3248. doi: 10.1039/b705443m
(36) Dokko, K.; Shiraishi, K.; Kanamura, K. J. Electrochem. Soc.2005, 152, A2199.
(37) Sun, X.; Xu, Y. Mater. Lett. 2012, 84, 139. doi: 10.1016/j.matlet.2012.06.053

[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[2] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[3] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[4] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1533-1547.
[5] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[6] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[7] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[8] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[9] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[10] Sheng-Yi MIAO,Xian-Fu WANG,Cheng-Lin YAN. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 18-27.
[11] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241.
[12] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2287-2292.
[13] Jing-Lun WANG,Xiao-Dan YAN,Tian-Qiao YONG,Ling-Zhi ZHANG. Nitrile-Modified 2, 5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2293-2300.
[14] Ai-Ming WU,Guo-Feng XIA,Shui-Yun SHEN,Jie-Wei YIN,Ya MAO,Qing-You BAI,Jing-Ying XIE,Jun-Liang ZHANG. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1866-1879.
[15] Wen LUO,Lei HUANG,Dou-Dou GUAN,Ru-Han HE,Feng LI,Li-Qiang MAI. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1999-2006.