Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (01): 151-156    DOI: 10.3866/PKU.WHXB201210093
Improving Photocatalytic Performance for Hydrogen Generation over Co-Doped ZnIn2S4 under Visible Light
YUAN Wen-Hui1, LIU Xiao-Chen1, LI Li2
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P.R.China;
2 College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P.R.China
Download:   PDF(1380KB) Export: BibTeX | EndNote (RIS)      


A series of Co-doped ZnIn2S4 photocatalysts were prepared via a solvothermal synthesis method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-visible (UV-Vis) diffuse reflectance spectroscopy. The results indicated that the Co was successfully incorporated into the ZnIn2S4 lattice as confirmed by XRD and XPS. With increasing Co concentration, the absorption edge of the samples shifted to longer wavelength, while the morphology of ZnIn2S4 was gradually destroyed. Photocatalytic results demonstrated that Co2+ doping could greatly enhance the photocatalytic activity of ZnIn2S4. The optimal amount of Co doping for the ZnIn2S4 photocatalyst was 0.3%(w), which displayed the highest photocatalytic activity. The possible photocatalytic mechanism was discussed.

Key wordsPhotocatalyst      Doping      Visible light      Hydrogen generation      Water splitting     
Received: 09 August 2012      Published: 09 October 2012
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (20976057).

Cite this article:

YUAN Wen-Hui, LIU Xiao-Chen, LI Li. Improving Photocatalytic Performance for Hydrogen Generation over Co-Doped ZnIn2S4 under Visible Light. Acta Phys. -Chim. Sin., 2013, 29(01): 151-156.

URL:     OR

(1) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125 (10), 3082. doi: 10.1021/ja027751g
(2) Kim, H. G.; Hwang, D.W.; Bae, S.W.; Jung, J. H.; Lee, J. S.Catal. Lett. 2003, 91 (3-4), 193.
(3) Chen,W.; Dong, X. F.; Chen, Z. S.; Chen, S. Z.; Lin,W. M.Acta Phys. -Chim. Sin. 2009, 25 (6), 1107. [陈威, 董新法,陈之善, 陈胜洲, 林维明. 物理化学学报, 2009, 25 (6), 1107.]doi: 10.3866/PKU.WHXB20090624
(4) Huang, L. H.; Chan, Q. Z.; Zhang, B.;Wu, X. J.; Gao, P.; Jiao,Z. B.; Liu, Y. L. Chin. J. Catal. 2011, 32 (11-12), 1822. doi: 10.1016/S1872-2067(10)60286-0
(5) Zou, Z.; Ye, J.; Arakawa, H.; Sayama, K. Nature 2001, 414 (6864), 625. doi: 10.1038/414625a
(6) Kim, H. G.; Hwang, D.W.; Lee, J. S. J. Am. Chem. Soc. 2004,126 (29), 8912. doi: 10.1021/ja049676a
(7) Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue,Y.; Domen, K. Nature 2006, 440 (7082), 295. doi: 10.1038/440295a
(8) Ritterskamp, P.; Kuklya, A.;Wustkamp, M. A.; Kerpen, K.;Weidenthaler, C.; Demuth, M. Angew. Chem. Int. Edit. 2007, 46 (41), 7770.
(9) Chaudhari, N. S.; Bhirud, A. P.; Sonawane, R. S.; Nikam, L. K.;Warule, S. S.; Rane, V. H.; Kale, B. B. Green Chem. 2011, 13 (9), 2500. doi: 10.1039/c1gc15515f
(10) Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. J. Phys. Chem. B2005, 109 (15), 7323. doi: 10.1021/jp044722e
(11) Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. J. Am. Chem. Soc.2004, 126 (41), 13406. doi: 10.1021/ja048296m
(12) Tsuji, I.; Kato, H.; Kudo, A. Chem. Mater. 2006, 18 (7), 1969.doi: 10.1021/cm0527017
(13) Romeo, N.; Dallaturca, A.; Braglia, R.; Sberveglieri, G. Appl. Phys. Lett. 1973, 22 (1), 21. doi: 10.1063/1.1654457
(14) Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.;Hepp, A. F. Chem. Mater. 2003, 15 (16), 3142. doi: 10.1021/cm034161o
(15) Seo,W. S.; Otsuka, R.; Okuno, H.; Ohta, M.; Koumoto, K.J. Mater. Res. 1999, 14 (11), 4176. doi: 10.1557/JMR.1999.0565
(16) Lei, Z.; You,W.; Liu, M.; Zhou, G.; Takata, T.; Hara, M.;Domen, K.; Li, C. Chem. Commun. 2003, 2142.
(17) Shen, S. H.; Zhao, L.; Guo, L. J. J. Phys. Chem. Solids 2008, 69 (10), 2426. doi: 10.1016/j.jpcs.2008.04.035
(18) Shen, S. H.; Zhao, L.; Guo, L. J. Int. J. Hydrog. Energy 2008,33 (17), 4501. doi: 10.1016/j.ijhydene.2008.05.043
(19) Shen, S. H.; Zhao, L.; Guo, L. J. Mater. Res. Bull. 2009, 44 (1),100. doi: 10.1016/j.materresbull.2008.03.027
(20) Lu, Y. C.; Lin, Y. H.;Wang, D. J.;Wang, L. L.; Xie, T. F.; Jiang,T. F. Nano Res. 2011, 4 (11), 1144. doi: 10.1007/s12274-011-0163-4
(21) Bai, X. F.; Li, J. S. Mater. Res. Bull. 2011, 46 (7), 1028. doi: 10.1016/j.materresbull.2011.03.012
(22) Peng, S. J.; Zhu, P. N.; Thavasi, V.; Mhaisalkar, S. G.;Ramakrishna, S. Nanoscale 2011, 3, 2602. doi: 10.1039/c0nr00955e
(23) Cai,W.; Zhao, Y. S.; Hu, J.; Zhong, J. S.; Xiang,W. D. J. Mater. Sci. Technol. 2011, 27 (6), 559. doi: 10.1016/S1005-0302(11)60108-4
(24) Dubey, N.; Labhsetwar, K.; Devotta, S.; Rayalu, S. Catal. Today2007, 129 (3-4), 428. doi: 10.1016/j.cattod.2006.09.041
(25) Jing, D.W.; Liu, M. C.; Guo, L. J. Catal. Lett. 2010, 140 (3-4),167. doi: 10.1007/s10562-010-0442-9
(26) Shen, S. H.; Zhao, L.; Guo, L. J. J. Phys. Chem. C 2008, 112 (41), 16148. doi: 10.1021/jp804525q
(27) Zhang, X.; Jing, D.; Liu, M.; Guo, L. J. Catal. Commun. 2008, 9 (8), 1720. doi: 10.1016/j.catcom.2008.01.032
(28) Wang, B. Q.; Xia, C. H.; Iqbal, J.; Tang, N. J.; Sun, Z. R.; Lv, Y.;Wu, L. Solid State Sci. 2009, 11 (8), 1419. doi: 10.1016/j.solidstatesciences.2009.04.024
(29) Jing, D.W.; Zhang, Y.; Guo, L. J. Chem. Phys. Lett. 2005, 415 (1-3), 74. doi: 10.1016/j.cplett.2005.08.080

[1] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.
[2] Yongjun LI,Yuliang LI. Chemical Modification and Functionalization of Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 992-1013.
[3] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[4] Peng HUANG,Ligang YUAN,Yaowen LI,Yi ZHOU,Bo SONG. L-3, 4-dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: towards High-Performance Planar p-i-n Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1264-1271.
[5] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[6] Hui-Jun YAN,Biao LI,Ning JIANG,Ding-Guo XIA. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1781-1788.
[7] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[8] Yang ZHOU,Gao LI. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1297-1309.
[9] Yan-Gong ZHENG,Li-Na ZHU,Han-Yu LI,Jia-Wen JIAN,Hai-Ying DU. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 573-581.
[10] Tao JING,Ying DAI. Development of Solid Solution Photocatalytic Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 295-304.
[11] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[12] Lei XING,Li-Ying JIAO. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2133-2145.
[13] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[14] Yuan-Yuan LI,Xin-Xin ZHAO,Yi-Ming MI,Gai-Li SUN,Jian-Bao WU,Li-Li WANG. Effect of Y on the Properties of Graphene for Hydrogen Storage[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1658-1665.
[15] Chun-Xia TIAN,Jun-Shuai YANG,Xiao-Hua ZHANG,Jin-Hua CHEN. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1473-1481.