Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (01): 157-166    DOI: 10.3866/PKU.WHXB201210152
Preparation of Grafted PTFE Fiber Metallic Complexes and Their Photocatalytic Degradation Abilities
DING Zhi-Zhong1, DONG Yong-Chun1,2, LI Bing1, LI Miao1
1 Division of Textile Chemistry & Ecology, School of Textiles, Tianjin Polytechnic University, Tianjin 300387, P. R. China;
2 State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, P. R. China
Download:   PDF(776KB) Export: BibTeX | EndNote (RIS)      


Polyacrylic acid grafted polytetrafluoroethylene (PAA-g-PTFE) fibers were coordinated with Fe3+ ions and with a mixture of Cu2+ and Fe3+ ions to prepare PAA-g-PTFE Fe and Cu-Fe bimetallic complexes. The chemical structures and light adsorption properties of the complexes were characterized using Fourier transform infrared (FTIR) spectrometry and UV-Vis diffuse reflection spectroscopy (DRS), respectively. The complexes were used as heterogeneous photo-Fenton catalysts in the oxidative degradation of the azo dye, Reactive Blue 222, in different pH aqueous media. The results indicate that Fe3+ coordinates with six carboxyl groups grafted on the surface of PAA-g-PTFE in the presence or absence of Cu2+ ion, and improved light adsorption properties are achieved in the UV and visible regions. When both metal ions coexist in solution, the Cu2+ ion coordinates more easily with PAA-g-PTFE than Fe3+ to produce a PAA-g-PTFE Cu-Fe bimetallic complex. Moreover, PAA-g-PTFE Fe significantly increases the degradation of Reactive Blue 222 in the pH range 3-9 under visible irradiation. However, at high pH conditions (> 7) the catalytic ability is reduced. Increasing the Fe content, and especially incorporating Cu2+ ions in the complex, dramatically improves the catalytic reusability at high pH value.

Key wordsPolytetrafluoroethylene fiber      Metallic complex      Coordination structure      Photocatalysis      Fenton reaction      Dye degradation     
Received: 20 August 2012      Published: 15 October 2012
MSC2000:  O643.2  

The project was supported by the Tianjin Municipal Science and Technology Committee for a Research Program of Application Foundation and Advanced Technology (11JCZDJ24600) and National Natural Science Foundation of China (20773093).

Cite this article:

DING Zhi-Zhong, DONG Yong-Chun, LI Bing, LI Miao. Preparation of Grafted PTFE Fiber Metallic Complexes and Their Photocatalytic Degradation Abilities. Acta Phys. -Chim. Sin., 2013, 29(01): 157-166.

URL:     OR

(1) Dhananjeyan, M. R.; Kiwi, J.; Albersb, P. Helv. Chim. Acta2001, 84, 3433.
(2) Ishtchenko, V. V.; Huddersman, K. D.; Vitkovskaya, R. F. Appl. Catal. A 2003, 242, 123. doi: 10.1016/S0926-860X(02)00511-2
(3) Parra, S.; Guasaquillo, I.; Enea, O.; Mielczarski, E.; Mielczarki,J.; Albers, P.; Kiwi-Minsker, L.; Kiwi, J. J. Phys. Chem. B 2003,107, 7026. doi: 10.1021/jp030045x
(4) Ishtchenko, V. V.; Huddersman, K. D.; Vitkovskaya, R. F. Appl. Catal. A 2003, 242, 221. doi: 10.1016/S0926-860X(02)00512-4
(5) Han, Z. B.; Dong, Y. C.; Dong, S. M. J. Hazard. Mater. 2011,189, 241. doi: 10.1016/j.jhazmat.2011.02.026
(6) Dong, Y. C.; Du, F.; Han, Z. B. Acta Phys. -Chim. Sin. 2008, 24,2114. [董永春, 杜芳, 韩振邦. 物理化学学报, 2008, 24,2114.] doi: 10.3866/PKU.WHXB20081130
(7) Fernandez, J.; Dhananjeyan, M. R.; Kiwi, J. J. Phys. Chem. B2000, 104, 5298.
(8) Dong, Y. C.; Dong,W. J.; Han, Z. B. Catal. Today 2011, 175,346. doi: 10.1016/j.cattod.2011.03.035
(9) Liu, X.; Tang, R.; He, Q.; Liao, X.; Shi, B. J. Hazard. Mater.2010, 174, 687. doi: 10.1016/j.jhazmat.2009.09.105
(10) Han, Z. B.; Dong, Y. C.; Dong, S. M. Mater. Des. 2010, 31,2784. doi: 10.1016/j.matdes.2010.01.015
(11) Can, H. Y.; Li, Z. Q.; Cai, Z. S. Chemistry and Physics of Fiber;Science Press: Beijing, 1991; p 498. [詹怀宇, 李志强, 蔡再生. 纤维化学与物理. 北京: 科学出版社, 1991: 498.]
(12) Wu, S.; Kang, E. T.; Neoh, K. G.; Han, H. S.; Tan, K. L.Macromolecules 1999, 32, 186. doi: 10.1021/ma9803133
(13) Zhang, M. C.; Kang, E. T.; Neoh, K. G. Langmuir 2000, 16,9666. doi: 10.1021/la000568l
(14) Zhang, Q.; Zhang, S.; Chen, S.; Li, P.; Qin, T.; Yuan, S.J. Colloid Interface Sci. 2008, 322, 421. doi: 10.1016/j.jcis.2008.03.049
(15) Xiong, C.; Yao, C. J. Hazard. Mater. 2009, 170, 1125. doi: 10.1016/j.jhazmat.2009.05.089
(16) Wei, J. F.;Wang, Z. P.; Zhang, J.;Wu, Y. Y.; Zhang, Z. P.;Xiong, C. H. React. Funct. Polym. 2005, 65, 127. doi: 10.1016/j.reactfunctpolym.2005.01.009
(17) Feng, J. Y.; Hu, X. J.; Yue, P. L.; Zhu, H. Y.; Liu, G. Q. Ind. Eng. Chem. Res. 2003, 42, 2058. doi: 10.1021/ie0207010
(18) Yang, X.W.; Luo, Y. Y. Textbook of Chemical Products: Dyestuffs; Chemical Industry Press: Beijing, 2005; pp 156-541.[杨新玮, 罗钰言. 化工产品手册: 染料. 北京: 化学工业出版社, 2005: 156-541.]
(19) Zhang, X. L. Complex Chemical; Metallurgical Industry Press:Beijing, 1979; p 102. [张祥麟. 络合物化学. 北京: 冶金工业出版社, 1979: 102.]
(20) Zhou, L. M.;Wang, Y. P.; Huang, Q.W.; Liu, Z. R. Acta Phys. -Chim. Sin. 2007, 23, 1979. [周利民, 王一平, 黄群武,刘峙嵘. 物理化学学报, 2007, 23, 1979.] doi: 10.3866/PKU.WHXB20071228
(21) El-Sawy, N. M.; Sagheer, F. A. Eur. Polym. J. 2001, 37, 161.doi: 10.1016/S0014-3057(00)00096-3
(22) Li, H. Coordination Chemistry; Chemical Industry Press:Beijing, 2005; p 194. [李晖. 配位化学. 北京: 化学工业出版社, 2005: 194.]
(23) Feng, J.; Hu, X.; Yue, P. L. Water Res. 2006, 40, 641. doi: 10.1016/j.watres.2005.12.021
(24) Lam, F. L. Y.; Yip, A. C. K.; Hu, X. Ind. Eng. Chem. Res. 2007,46, 3328. doi: 10.1021/ie061436b
(25) Pan, C. Y. Functional Polymers; Science Press: Beijing, 2006;p 55. [潘才元. 功能高分子. 北京: 科学出版社, 2006: 55.]
(26) Cheng, M.; Song,W.; Ma,W.; Chen, C.; Zhao, J.; Lin, J.; Zhu,H. Appl. Catal. B 2008, 77, 355. doi: 10.1016/j.apcatb.2007.08.006
(27) Ma,W.; Huang, Y.; Li, J.; Chen, M.; Song,W.; Zhao, J. Chem. Commun. 2003, 1582.
(28) Groves, J. T. J. Inorg. Biochem. 2006, 100, 434. doi: 10.1016/j.jinorgbio.2006.01.012
(29) Yip, A. C. K.; Lam, F. L. Y.; Hu, X. Chem. Eng. Sci. 2007, 62,5150. doi: 10.1016/j.ces.2007.01.014
(30) Fan, B. B.; Li, H. Y.; Fan,W. B.; Jin, C.; Li, R. F. Appl. Catal. A2008, 340, 67. doi: 10.1016/j.apcata.2008.01.032
(31) Guimaraes, I. R.; Giroto, A.; Oliveira, L. C. A.; Guerreiro, M.C.; Lima, D. Q.; Fabris, J. D. Appl. Catal. B 2009, 91, 581. doi: 10.1016/j.apcatb.2009.06.030

[1] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[2] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[3] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[4] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[5] Hao ZHANG,Xin-Gang LI,Jin-Meng CAI,Ya-Ting WANG,Mo-Qing WU,Tong DING,Ming MENG,Ye TIAN. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[6] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[7] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[8] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[9] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[10] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[11] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.
[12] Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1519-1526.
[13] Yan-Juan WANG,Jia-Yao SUN,Rui-Jiang FENG,Jian ZHANG. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 728-736.
[14] Li-Fang HU,Jie HE,Yuan LIU,Yun-Lei ZHAO,Kai CHEN. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 737-744.
[15] Jian-Dong ZHUANG,Qin-Fen TIAN,Ping LIU. Bi2Sn2o7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 551-557.