Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (01): 102-110    DOI: 10.3866/PKU.WHXB201210231
ELECTROCHEMISTRY AND NEW ENERGY     
Synthesis of Nitrogen Doped Porous Carbons from Sodium Carboxymethyl Cellulose and the Capacitive Performance
CHEN Chong, CHEN Xiang-Ying, XIE Dong-Hua
Anhui Key Laboratory of Controllable Chemistry Reaction & Material Chemical Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, P. R. China
Download:   PDF(3013KB) Export: BibTeX | EndNote (RIS)      

Abstract  

We demonstrate a direct carbonization method to prepare porous carbons as electrode materials without an activation process, using sodium carboxymethyl cellulose (NaCMC) as the carbon source, which are further doped with varying mass ratios of nitrogen. From X-ray photoelectron data, the nitrogen species include pyridinic N, graphitic N, and pyrrolic N. The relative mass ratios of NaCMC and CO(NH2)2 affect the nature of the nitrogen species, dopant dosages as well as specific surface areas and pore structures. The cyclic voltammetry and galvanostatic charge-discharge measurements in 6 mol·L-1 KOH aqueous solutions reveal that the specific surface areas and capacitive performances improve after nitrogen-doping. Taking carbon-N-1:20 as example, its SBET can reach 858 m2·g-1, which is higher than that of carbon-blank (463 m2·g-1) and the corresponding specific capacitance greatly improves from 94.0 to 156.7 F· g-1, respectively. The present carbons are excellent electrode candidates for high-rate electrochemical capacitors.



Key wordsSodium carboxymethyl cellulose      Porous carbon      Nitrogen doping      Capacitive performance     
Received: 02 October 2012      Published: 24 October 2012
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (21101052), Anhui Provincial Natural Science Foundation, China (090414194), China Postdoctoral Science Foundation (20100480045), and Fundamental Research Funds for the Central Universities, China.

Cite this article:

CHEN Chong, CHEN Xiang-Ying, XIE Dong-Hua. Synthesis of Nitrogen Doped Porous Carbons from Sodium Carboxymethyl Cellulose and the Capacitive Performance. Acta Phys. Chim. Sin., 2013, 29(01): 102-110.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201210231     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I01/102

(1) Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.;Dai, S. Adv. Mater. 2011, 23, 4828. doi: 10.1002/adma.201100984
(2) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin.2012, 28, 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28, 2745.] doi: 10.3866/PKU.WHXB201208221
(3) Wang, G. P.; Zhang, L.; Zhang, J. J. Chem. Soc. Rev. 2012, 41,797. doi: 10.1039/c1cs15060J
(4) Frackowiak, E. Phys. Chem. Chem. Phys. 2007, 9, 1774. doi: 10.1039/b618139m
(5) Hulicova, D.; Yamashita, J.; Soneda, Y.; Hatori, H.; Kodama, M.Chem. Mater. 2005, 17, 1241. doi: 10.1021/cm049337g
(6) Su, F. B.; Poh, C. K.; Chen, J. S.; Xu, G.W.;Wang, D.; Li, Q.;Lin, J. Y.; Lou, X.W. Energy Environ. Sci. 2011, 4, 717. doi: 10.1039/c0ee00277a
(7) Konno, H.; Ito, T.; Ushiro, M.; Fushimi, K.; Azumi, K. J. Power Sources 2010, 195, 1739. doi: 10.1016/j.jpowsour.2009.09.072
(8) Zhao, L.; Baccile, N.; Gross, S.; Zhang, Y. J.;Wei,W.; Sun, Y.H.; Antonietti, M.; Titirici, M. M. Carbon 2010, 48, 3778. doi: 10.1016/j.carbon.2010.06.040
(9) White, R. J.; Antonietti, M.; Titirici, M. M. J. Mater. Chem.2009, 19, 8645. doi: 10.1039/b911528e
(10) Horikawa, T.; Sakao, N.; Sekida, T.; Hayashi, J.; Do, D. D.;Katoh, M. Carbon 2012, 50, 1833. doi: 10.1016/j.carbon.2011.12.033
(11) Lai, L. F.; Chen, L.W.; Zhan, D.; Sun, L.; Liu, J. P.; Lim, S. H.;Poh, C. K.; Shen, Z. X.; Lin, J. Y. Carbon 2011, 49, 3250. doi: 10.1016/j.carbon.2011.03.051
(12) Zhang, D. Y.; Hao, Y.; Ma, Y.; Feng, H. X. Appl. Surf. Sci. 2012,258, 2510. doi: 10.1016/j.apsusc.2011.10.081
(13) Gorgulho, H. F.; Gonçalves, F.; Pereira, M. F. R.; Figueiredo, J.L. Carbon 2009, 47, 2032. doi: 10.1016/j.carbon.2009.03.050
(14) Chen, P.; Xiao, T. Y.; Li, H. H.; Yang, J. J.;Wang, Z.; Yao, H.B.; Yu, S. H. ACS Nano 2012, 6, 712. doi: 10.1021/nn204191x
(15) Guo, H. L.; Gao, Q. M. J. Power Sources 2009, 186, 551. doi: 10.1016/j.jpowsour.2008.10.024
(16) Zhao, X. C.;Wang, A. Q.; Yan, J.W.; Sun, G. Q.; Sun, L. X.;Zhang, T.; Zhang, T. Chem. Mater. 2010, 22, 5463. doi: 10.1021/cm101072z
(17) Kwon, T.; Nishihara, H.; Itoi, H.; Yang, Q. H.; Kyotani, T.Langmuir 2009, 25, 11961. doi: 10.1021/la901318d
(18) Chang, C. Y.; Zhang, L. N. Carbohydrate Polymer 2011, 84, 40.doi: 10.1016/j.carbpol.2010.12.023
(19) Li,W.; Sun, B. J.;Wu, P. Y. Carbohydrate Polymer 2009, 78,454. doi: 10.1016/j.carbpol.2009.05.002
(20) Biswal, D. R.; Singh, R. P. Carbohydrate Polymer 2004, 57,379. doi: 10.1016/j.carbpol.2004.04.020
(21) Chen, L. F.; Zhang, X. D.; Liang, H.W.; Kong, M. G.; Guan, Q.F.; Chen, P.;Wu, Z. Y.; Yu, S. H. ACS Nano 2012, 6, 7092. doi: 10.1021/nn302147s
(22) Maldonado, S.; Morin, S.; Stevenson, K. J. Carbon 2006, 44,1429. doi: 10.1016/j.carbon.2005.11.027
(23) Dommele, S.; Romero-Izquirdo, A.; Brydson, R.; Jong, K. P.;Bitter, J. H. Carbon 2008, 46, 138. doi: 10.1016/j.carbon.2007.10.034
(24) Matter, P. H.; Zhang, L.; Ozkan, U. S. J. Catal. 2006, 239, 83.doi: 10.1016/j.jcat.2006.01.022
(25) Usachov, D.; Vilkov, O.; Grüneis, A.; Haberer, D.; Fedorov, A.;Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov, A.;Oehzelt, M.; Laubschat, C.; Vyalikh, D. V. Nano Lett. 2011, 11,5401. doi: 10.1021/nl2031037
(26) Pevida, C.; Drage, T. C.; Snape, C. E. Carbon 2008, 46, 1464.doi: 10.1016/j.carbon.2008.06.026
(27) Wu, X. L.;Wang,W.; Guo, Y. G.;Wan, L. J. J. Nanosci. Nanotech. 2011, 11, 1897. doi: 10.1166/jnn.2011.3525
(28) Huang, M. C.; Teng, H. S. Carbon 2002, 40, 955. doi: 10.1016/S0008-6223(02)00068-4
(29) Inagaki, M.; Konno, H.; Tanaike, O. J. Power Sources 2010,195, 7880. doi: 10.1016/j.jpowsour.2010.06.036
(30) Li, Q. Y.;Wang, H. Q.; Dai, Q. F.; Yang, J. H.; Zhong, Y. L.Solid State Ionics 2008, 179, 269. doi: 10.1016/j.ssi.2008.01.085
(31) Ma, Y.; Zhang, C.; Ji, G.; Lee, J. Y. J. Mater. Chem. 2012, 22,7845. doi: 10.1039/c2jm30422h
(32) Zhang,W. F.; Huang, Z. H.; Gao, G. P.; Kang, F. Y.;Yang, Y. S.J. Power Sources 2012, 204, 230. doi: 10.1016/j.jpowsour.2011.12.054

[1] MENG Yan-Shuang, WANG Chen, WANG Lei, WANG Gong-Rui, XIA Jun, ZHU Fu-Liang, ZHANG Yue. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1915-1922.
[2] LIU Dan, HU Yan-Yan, ZENG Chao, QU De-Yu. Soft-Templated Ordered Mesoporous Carbon Materials: Synthesis, Structural Modification and Functionalization[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2826-2840.
[3] XU Juan, LIU Jia-Qin, LI Jing-Wei, WANG Yan, Lü Jun, WU Yu-Cheng. Controlled Synthesis and Supercapacitive Performance of Heterostructured MnO2/H-TiO2 Nanotube Arrays[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2545-2554.
[4] LI Chun-Yang, GENG Long-Long, YANG Xu-Wei, WU Shu-Jie, ZHANGWen-Xiang, LIU Gang. Influence of the Surface Properties of Mesoporous Carbon on the Adsorption Removal of Ammonia under Low Concentration Conditions[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2599-2605.
[5] HAYIERBIEK Kulisong, ZHAO Shu-Xian, YANG Yang, ZENG Han. Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1715-1726.
[6] JIN Zhen-Yu, LI Tong, LU An-Hui. Nitrogen-Enriched Hierarchical Porous Carbon for Carbon Dioxide Adsorption and Separation[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1602-1608.
[7] GAO Shuang, YAN Jian-Biao, CONG De-Quan, SUI Qiang-Sheng, XIA Yan-Yang, CHENG Dong-Dong, BAO Qiang, WANG Zhen - Lü, WANG Li-Yan. Preparation of Sn-Modified Ru/H-CMK-3 Catalysts and Their Application in the Hydrogenation of Cinnamaldehyde[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1391-1398.
[8] YANG Shuo, XU Gui-Yin, HAN Jin-Peng, BING Huan, DOU Hui, ZHANG Xiao-Gang. Nitrogen-Doped Porous Carbon Derived from Dopamine-Modified Polypyrrole and Its Electrochemical Capacitive Behavior[J]. Acta Phys. Chim. Sin., 2015, 31(4): 685-692.
[9] LI Li-Xiang, ZHAO Hong-Wei, XU Wei-Wei, ZHANG Yan-Qiu, AN Bai-Gang, GENG Xin. Preparation and Electrocatalytic Performance of Iron Based Nitrogen Doped Carbon Nanotubes[J]. Acta Phys. Chim. Sin., 2015, 31(3): 498-504.
[10] WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan. Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Phys. Chim. Sin., 2015, 31(1): 90-98.
[11] PENG San, GUO Hui-Lin, KANG Xiao-Feng. Preparation of Nitrogen-Doped Graphene and Its Electrocatalytic Activity for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1778-1786.
[12] XU Ling-Ling, ZHANG Xiao-Hua, CHEN Jin-Hua. Synthesis and Electrochemical Supercapacitive Properties of Nitrogen-Doped Mesoporous Carbons[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1274-1280.
[13] ZHOU Ying, WANG Dao-Long, XIAO Nan, HOU Yu-Chen, QIU Jie-Shan. Influence of Heat Treatment Temperature on the Structure and Electrochemical Performance of Asphaltene-Based B/N Co-Doped Porous Carbons[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1127-1133.
[14] HU Jing-Xiu, ZHANG Jing, ZOU Jian-Feng, XIAO Qiang, ZHONG Yi-Jun, ZHU Wei-Dong. Nitrogen-Rich Microporous Carbon Derived from Melamine-Based Porous Polymer for Selective CO2 Adsorption[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1169-1174.
[15] ZHANG Xuan-Xuan, RAN Fen, FAN Hui-Li, KONG Ling-Bin, KANG Long. Hydrothermal Synthesis and Electrochemical Measurements of Interconnected Porous Carbon/MnO2 Composites[J]. Acta Phys. Chim. Sin., 2014, 30(5): 881-890.