Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (01): 117-122    DOI: 10.3866/PKU.WHXB201210234
ELECTROCHEMISTRY AND NEW ENERGY     
Synthesis and Electrochemical Performance of Graphene/Polyaniline
WANG Hong-Zhi, GAO Cui-Xia, ZHANG Peng, YAO Su-Wei, ZHANG Wei-Guo
Shan Shan Research Office of Surface Technology, College of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
Download:   PDF(779KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphene/polyaniline composites (GP) were prepared from aniline and graphite oxide using an electrochemical method. The structure characterization and surface morphology were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), and its electrochemical properties were measured. The results show that the composite keeps the basic morphology of graphene and that the polyaniline particles are uniformly dispersed. The specific capacitances of the composite materials reach 352 and 315 F·g-1 at 500 and 1000 mA·g-1, respectively, higher than those of graphene and polyaniline. The majority (90%) of the capacitance remains after 1000 cycles of charge and recharge at 1000 mA·g-1. The composite shows potential for use in supercapacitors.



Key wordsGraphene      Polyaniline      Composite      Electrochemical preparation      Property     
Received: 24 August 2012      Published: 24 October 2012
MSC2000:  O646  
Fund:  

The project was supported by the Natural Science Foundation of Tianjin, China (11JCYBJC01900).

Cite this article:

WANG Hong-Zhi, GAO Cui-Xia, ZHANG Peng, YAO Su-Wei, ZHANG Wei-Guo. Synthesis and Electrochemical Performance of Graphene/Polyaniline. Acta Phys. Chim. Sin., 2013, 29(01): 117-122.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201210234     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I01/117

(1) Miller, J. R.; Outlaw, R. A.; Holloway, B. C. Science 2010, 329,1637. doi: 10.1126/science.1194372
(2) Chen, S. M. Preparation of Novel Carbon Materials and TheirApplication in Electrochemical Field. M. E. Dissertation,Beijing University of Chemical Technology, Beijing, 2010. [陈思明. 新型石墨材料的制备及其在电化学领域方面的应用[D]. 北京: 北京化工大学, 2010.]
(3) El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Science2012, 335, 1326. doi: 10.1126/science.1216744
(4) Korenblit, Y.; Rose, M.; Kockrick, E.; Borchardt, L.; Kvit, A.;Kaskel, S.; Yushin, G. ACS Nano 2010, 4, 1337. doi: 10.1021/nn901825y
(5) Hantel, M. M.; Kaspar, T.; Nesper, R.;Wokaun, A.; Kotz, R.Electrochem. Commun. 2011, 13, 90. doi: 10.1016/j.elecom.2010.11.021
(6) Vickery, J. L.; Patil, A. J.; Mann, S. Adv. Mater. 2009, 21, 2180.doi: 10.1002/adma.v21:21
(7) Stoller, M. D.; Park, S. J.; Zhu, Y.W.; An, J. H.; Ruoff, R. S.Nano Lett. 2008, 8, 3498. doi: 10.1021/nl802558y
(8) Wang, D.W.; Li, F.; Zhao, J. P.; Ren,W. C.; Chen, Z. G.; Tan,J.;Wu, Z. S.; Gentle, L.; Lu, G. Q.; Cheng, H. M. ACS Nano2009, 3, 1745. doi: 10.1021/nn900297m
(9) Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.;Wallance, G. G.Nat. Nanotechnol. 2008, 3, 101. doi: 10.1038/nnano.2007.451
(10) Xu, J. J.;Wang, K.; Zu, S. Z.; Han, B. H.;Wei, Z. X. ACS Nano2010, 4, 5019. doi: 10.1021/nn1006539
(11) Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. C.Carbon 2011, 49, 2917. doi: 10.1016/j.carbon.2011.02.068
(12) Zhang, K.; Mao, L.; Zhang, L. L.; Chan, H. S. O.; Zhao, X. S.;Wu, J. S. J. Mater. Chem. 2011, 21, 7302. doi: 10.1039/c1jm00007a
(13) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉,吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.] doi: 10.3866/PKU.WHXB20100812
(14) Dong, P.; Zhou, J. Z.; Xi, Y. Y.; Cai, C. D.; Zhang, Y.; Zou, X.D.; Huang, H. G.;Wu, L. L.; Lin, Z. H. Acta Phys. -Chim. Sin.2004, 20, 454. [董平, 周剑章, 席燕燕, 蔡成东, 张彦, 邹旭东, 黄怀国, 吴玲玲, 林仲华. 物理化学学报, 2004, 20, 454.]doi: 10.3866/PKU.WHXB20040502
(15) Guo, L. H.;Wang, X. F.; Qian, Q. Y.;Wang, F. B.; Xia, X. H.ACS Nano 2009, 9, 2653.
(16) Zhou, M.;Wang, Y. L.; Zhai, Y. M.; Zhai, J. F.; Ren,W.;Wang,F. A.; Dong, S. J. Chem. Eur. J. 2009, 15, 6116. doi: 10.1002/chem.v15:25
(17) Shao, Y. Y.;Wang, J.; Engelhard, M.;Wang, C. M.; Lin, Y. H.J. Mater. Chem. 2010, 20, 743. doi: 10.1039/b917975e
(18) Liu, J. C. Synthesis and Study on Graphene and Co3O4/Graphene Composite about the Characteristic ofElectrochemistry. M. E. Dissertation, Harbin EngineeringUniversity, Harbin, 2011. [刘进程. 石墨烯和石墨烯基四氧化三钴复合物的制备及其电化学性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.]
(19) Zhang, K.; Zhang, L. L.; Zhao, X. S.;Wu, J. S. Chem. Mater.2010, 22, 1392. doi: 10.1021/cm902876u
(20) Majumdar, D.; Baskey, M.; Saha, S. K. Macromolecular Rapid Communications 2011, 32, 1.
(21) Yan, J.;Wei, T.; Shao, B.; Fan, Z. J.; Qian,W. Z.; Zhang, M. L.;Wei, F. Carbon 2010, 48, 487. doi: 10.1016/j.carbon.2009.09.066
(22) Huang, Y. Y. The Research of Interaction of Graphene/Polyanline Composite Interface. M. E. Dissertation, SunYat-Sen University, Guangzhou, 2010. [黄赟赟. 石墨烯/聚苯胺复合材料界面相互作用研究[D]. 广州: 中山大学, 2010.]
(23) Chen, L. Y.; Tang, Y. H.;Wang, K.; Liu, C. B.; Luo, S. L.Electrochem. Commun. 2011, 13, 133.
(24) Wang, H. L.; Hao, Q. L.; Yang, X. J.; Lu, L. D.;Wang, X.Nanoscale 2010, 2, 2164. doi: 10.1039/c0nr00224k
(25) Wu, K. Z.;Wang, Q. F.; Ma, Z. C.; Duan, X.W.; Li, C. B.;Zhen, X. Y. J. ShaoXing University 2010, 30, 24. [武克忠,王庆飞, 马子川, 段晓伟, 李彩宾, 甄晓燕. 绍兴文理学院学报,2010, 30, 24.]
(26) Lu, M.; Zhang, K.; Chan, H. S. O.;Wu, J. S. J. Mater. Chem.2012, 22, 80. doi: 10.1039/c1jm12869h

[1] FANG Lei, SUN Mingjun, CAO Xinrui, CAO Zexing. Mechanical and Optical Properties of a Novel Diamond-like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor:a First-Principles Study[J]. Acta Phys. Chim. Sin., 2018, 34(3): 296-302.
[2] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[3] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[4] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[5] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[6] LI Guo-Min, ZHU Bao-Shun, LIANG Li-Ping, TIAN Yu-Ming, Lü Bao-Liang, WANG Lian-Cheng. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1715-1720.
[7] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[8] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[9] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[10] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[11] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[12] KONG Wei-Wei, GUO Shuang, ZHANG Yong-Min, LIU Xue-Feng. Redox-Responsive Interfacial Properties of Se-Containing Sulfobetaine Surfactant[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1205-1213.
[13] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[14] LI Jun-Tao, WU Jiao-Hong, ZHANG Tao, HUANG Ling. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Phys. Chim. Sin., 2017, 33(5): 968-975.
[15] GOLMOHAMMADI Hassan, DASHTBOZORGI Zahra, KHOOSHECHIN Sajad. Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds[J]. Acta Phys. Chim. Sin., 2017, 33(5): 918-926.