Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (01): 205-211    DOI: 10.3866/PKU.WHXB201210264
Hydrogen Production from the Decomposition of Ethanol Aqueous Solution Using Glow Discharge Plasma Electrolysis
TAO Jing-Liang, XIONG Yuan-Quan
Key Laboratory for Energy of Heat Conversion and its Process of Measurement and Control, School of Energy and Environment, SouthEast University, Nanjing, 210096, P. R. China
Download:   PDF(1839KB) Export: BibTeX | EndNote (RIS)      


High-energy electrons play the most important role in the decomposition of ethanol aqueous solutions under glow discharge plasma electrolysis (GDE). The non-Faradaic currents greatly improve, resulting in the actual gas production yield exceeding the theoretical yield. In this paper, we investigated a novel process of hydrogen generation from ethanol decomposition by GDE. The main gaseous products were H2 and CO; in addition to small amounts of C2H4, CH4, O2, and C2H6. The H2 volume fraction was above 59% and CO was 20%. We conclude that voltages of points C and D (VC and VD) do not change with the electrolyte concentration, but the 'Kellogg area' becomes narrower with increasing electrolyte conductivity and the glow discharge is easier to attain. In addition, with increasing ethanol volume fraction, the H2 volume fraction decreases. The maximum gas production rate occurred for ethanol volume fractions of 30% and 80%. Improving the discharge voltage and raising the electrolyte conductivity had the same effect on glow discharge plasma electrolysis as the voltage load at both ends of the plasma steam sheath increases. The H2 volume fraction remains the same upon varying the discharge voltage or electrolyte conductivity, but increasing the electrolyte conductivity is advantageous to reduce Joule heating effects caused by GDE.

Key wordsGlow discharge electrolysis      Gas generation rate      Electrolyte      Ethanol      Steam sheath      Hydrogen generation     
Received: 05 September 2012      Published: 26 October 2012
MSC2000:  O646.9  

The project was supported by the National Key Basic Research Program of China (973) (2010CB227002-02) and National High Technology Research and Development Program of China (863) (2011AA05A201).

Cite this article:

TAO Jing-Liang, XIONG Yuan-Quan. Hydrogen Production from the Decomposition of Ethanol Aqueous Solution Using Glow Discharge Plasma Electrolysis. Acta Phys. Chim. Sin., 2013, 29(01): 205-211.

URL:     OR

(1) Yan, Z. C.; Chen, L.;Wang, H. L. Acta Phys. -Chim. Sin. 2007,23, 835. [严宗诚, 陈砺, 王红林. 物理化学学报, 2007, 23,835.] doi: 10.3866/PKU.WHXB20070608
(2) Sengupta, S. K.; Singh, O. P. J. Electroanal. Chem. 1994, 369,113. doi: 10.1016/0022-0728(94)87089-6.
(3) Gao, J. Z.;Wang, X. Y.; Hu, Z. A.; Hou, J. G.; Lu, Q. F. Plasma Sci. Technol. 2001, 3, 765. doi: 10.1088/1009-0630/3/3/003
(4) Sengupta, S. K.; Singh, R.; Srivastva, A. K. J. Electrochem. Soc.1998, 145, 2209. doi: 10.1149/1.1838621
(5) Kuznetsova, N. I.; Kuznetsova, L. I.; Likholobov, V. A.; Pez, G.P. Catal. Today 2005, 99, 193. doi: 10.1016/j.cattod.2004.09.040
(6) Sengupta, S. K.; Sandhir, U.; Misra, N. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 1584. doi: 10.1002/pola.1134
(7) Gong, J. Y.;Wang, J.; Xie,W. J.; Cai,W. M. J. Appl. Electrochem. 2008, 38, 1749. doi: 10.1007/s10800-008-9626-z
(8) Yang, H.; Matsumoto, Y.; Tezuka, M. J. Environ. Sci. 2009, 21 (Suppl. 1), 142. doi: 10.1016/S1001-0742(09)60059-0
(9) Campbell, S. A.; Cunnane, V. J.; Schiffrin, D. J. J. Eletroanal. Soc. 1992, 325, 257. doi: 10.1016/0022-0728(92)80117-M
(10) Pei, M. X.; Lin, H.; Shangguan,W. F.; Huang, Z. Acta Phys. -Chim. Sin. 2005, 21, 255. [裴梅香, 林赫, 上官文峰,黄震. 物理化学学报, 2005, 21, 255.] doi: 10.3866/PKU.WHXB20050306
(11) Yu, Q. Q.; Liu, T.;Wang, H.; Xiao, L. P.; Chen, M.; Jiang, X. Y.;Zheng, X. M. Chin. J. Catal. 2012, 33, 783. [于琴琴, 刘彤,王卉, 肖丽萍, 陈敏, 蒋晓原, 郑小明. 催化学报, 2012, 33,783.] doi: 10.1016/S1872-2067(11)60362-8
(12) Sengupta, S. K.; Rajeshwar, S.; Ashok, K. S. J. Electroanal. Chem. 1997, 427, 23. doi: 10.1016/S0022-0728(96)05044-9
(13) Hickling, A.; Ingram, M. D. Trans. Faraday Soc. 1964, 60, 783.doi: 10.1039/TF9646000783
(14) Mandin, P.; Aissa, A. A.; Roustan, H.; Hamburger, J.; Picard, G.Chem. Eng. Process. 2008, 47, 1926. doi: 10.1016/j.cep.2007.10.018
(15) Mandin, P.; Le Graverend, J. B.;Wuthrich, R.; Roustan, H.ECS Trans. 2009, 16, 49. doi: 10.1149/1.3104647
(16) Jin, X. L.;Wang, X. Y.; Zhang, H. M.; Xia, Q.;Wei, D. B.; Yue,J. J. Plasma Chem. Plasma Process. 2010, 30, 429. doi: 10.1007/s11090-010-9220-0
(17) Jin, X. L.;Wang, X. Y.; Yun, J. J.; Cai, Y. Q.; Zhang, H. Y.Electrochim. Acta 2010, 56, 925. doi: 10.1016/j.electactta.2010.09.079
(18) Yan, Z. C.; Chen, L.;Wang, H. L. J. Phys. D: Appl. Phys. 2008,41, 1. doi: 10.1088/0022-3727/41/15/155205
(19) Yan, Z. C.; Chen, L.;Wang, H. L. Int. J. Hydrog. Energy 2009,34, 48. doi: 10.1016/j.ijhydene.2008.09.099
(20) Shen, P. K.;Wang, S. L.; Hu, Z. Y.; Li, Y. L.; Zeng, R.; Huang,Y. Q. Acta Phys. -Chim. Sin. 2007, 23, 107. [沈培康, 汪圣龙,胡智怡, 李永亮, 曾蓉, 黄岳强. 物理化学学报, 2007, 23,107.] doi: 10.3866/PKU.WHXB20070122
(21) Zeng, K.; Zhang, D. K. Prog. Energy Combust. Sci. 2010, 36,307. doi: 10.1016/j.pecs. 2009.11.002
(22) Holladay, J. D.; Hu, J.; King, D. L.;Wang, Y. Catal. Today2009, 139, 244. doi: 10.1016/j.cattod.2008.08.039
(23) Wüthrich, R.; Mandin, P. Electrochim. Acta 2009, 54, 4031. doi: 10.1016/j.electacta. 2009.02.029
(24) Franklin, R. N. J. Phys. D: Appl. Phys. 2003, 36, 309. doi: 10.1088/0022-3727/36/22/R01
(25) Yan, Z. C. Hydrogen Generation by Glow Discharge PlasmaElectrolysis of Low Alcohol. Ph. D. Dissertation, South ChinaUniversity of Technology, Guangzhou, 2007. [严宗诚. 低碳醇溶液辉光放电电解及其制氢应用[D]. 广州: 华南理工大学,2007.]
(26) Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds; Science Press: Beijing, 2005; pp 56-195. [罗渝然. 化学键能数据手册. 北京: 科学出版社, 2005: 56-195.]

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 247-255.
[2] MA Qiang, HU Yongsheng, LI Hong, CHEN Liquan, HUANG Xuejie, ZHOU Zhibin. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Phys. Chim. Sin., 2018, 34(2): 213-218.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[4] NING Hong-Yan, YANG Qi-Lei, YANG Xiao, LI Ying-Xia, SONG Zhao-Yu, LU Yi-Ren, ZHANG Li-Hong, LIU Yuan. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1865-1874.
[5] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[6] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[7] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[8] ZHANG Yan-Tao, LIU Zhen-Jie, WANG Jia-Wei, WANG Liang, PENG Zhang-Quan. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(3): 486-499.
[9] HUANG Ming-Hui, JIN Bi-Yao, ZHAO Lian-Hua, SUN Shi-Gang. Preparation and Characterization of Pt-Ni-SnO2/C for Ethanol Oxidation Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(3): 563-572.
[10] ZHENG Yan-Gong, ZHU Li-Na, LI Han-Yu, JIAN Jia-Wen, DU Hai-Ying. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Phys. Chim. Sin., 2017, 33(3): 573-581.
[11] XIE Yong-Min, WANG Xiao-Qiang, LIU Jiang, YU Chang-Lin. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. Chim. Sin., 2017, 33(2): 386-392.
[12] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[13] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[14] YE Bin, ZHANG Jian, GAO Cai, TANG Jing-Chun. Experimental and Theoretical Analysis of 1H NMR on Double-Carbon Alcohol Aqueous Solutions[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1978-1988.
[15] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2293-2300.