Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (01): 111-116    DOI: 10.3866/PKU.WHXB201211091
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation and Supercapacitor Performance of Nitrogen-Doped Carbon Nanotubes from Polyaniline Modification
LI Li-Xiang, TAO Jing, GENG Xin, AN Bai-Gang
Institute of Materials Electrochemistry Research, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning Province, P.R. China
Download:   PDF(1467KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nitrogen-doped carbon nanotubes (NCNTs) were prepared by carbonization of polyanilinecoated CNTs that were synthesized by in-situ polymerization of aniline on the CNT surface. The laser Raman spectroscopy, transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) indicated that carbonization treatment of the polyaniline (PANI) coated CNTs produced NCNTs owning the core-shell structure of a nitrogen-doped carbon shell and a CNT core, without destroying the intrinsic CNT structure. By increasing the aniline amount, the N-doped layer of the NCNTs became thicker, and the amount of nitrogen doping increased from 7.06% to 8.64% (mass fraction). As the supercapacitor electrode material, the NCNTs capacitance in 6 mol·L-1 aqueous KOH solution increased from 107 to 205 F·g-1 as the N-doped layer thickness decreased, which was much higher than the capacitance of 10 F·g-1 for the pristine CNTs. Especially, NCNT electrodes displayed good cyclability, maintaining 92.8%-97.1% of the initial capacitance after 1000 charge-discharge cycles. The high capacitance and good cyclability of the NCNTs as a supercapacitor electrode material can be attributed to the pseudo-Faradic capacitance and improved hydrophility contributed by the nitrogen functional groups and the core-shell structure of the NCNTs, respectively.



Key wordsCarbon nanotubes      Nitrogen doping      Polyaniline      Supercapacitor     
Received: 06 August 2012      Published: 09 November 2012
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (51102126), Foundation of the Ministry of Education of China for Returned Scholars (2011508), Growth Plan for Distinguished Young Scholars in Colleges and Universities of Liaoning, China (LJQ2011024, LJQ2012026), and Education Department Foundation of Liaoning, China (L2010197).

Cite this article:

LI Li-Xiang, TAO Jing, GENG Xin, AN Bai-Gang. Preparation and Supercapacitor Performance of Nitrogen-Doped Carbon Nanotubes from Polyaniline Modification. Acta Phys. Chim. Sin., 2013, 29(01): 111-116.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201211091     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I01/111

(1) Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes & Carbon Nanotubes; San Diego: Academic Press,March 1996; pp 20-35.
(2) Treacy, M. M. J.; Ebbesen, T.W.; Gibson, J. M. Nature 1996,381, 678. doi: 10.1038/381678a0
(3) Frackowiak, E.; Metenier, K.; Bertagna, V.; Beguin, F. Appl. Phys. Lett. 2000, 77, 2421. doi: 10.1063/1.1290146
(4) Li, C. S.;Wang, D. Z.;Wang, X. F.; Liang, J. Carbon 2005, 43,249.
(5) Baughman, R. H.; Zakhidov, A. A.; de Heer,W. A. Science2002, 297, 787. doi: 10.1126/science.1060928
(6) Shiratori, Y.; Sugime, H.; Noda, S. J. Phys. Chem. C 2008, 112,17974.
(7) Hou, P. X.; Orikasa, H.; Yamazaki, T.; Matsuoka, K.; Tomita,A.; Setoyama, N.; Fukushima, Y.; Kyotani, T. Chem. Mater.2005, 1, 5187.
(8) Eduardo, C. S.; Florentino, L. U.; Emilio, M. S. ACS Nano2009, 3, 1913. doi: 10.1021/nn900286h
(9) Yang, Y.; Li, X.; Jiang, J.; Du, H.; Zhao, L.; Zhao, Y. ACS. Nano 2010, 4, 5755. doi: 10.1021/nn1014825
(10) Byrne, J.; Li, Z.; Jones, S.; Fleming, P.; Larsson, J. A.; Morris,M. A.; Holmes, J. D. ChemPhysChem. 2011, 12, 2995. doi: 10.1002/cphc.v12.16
(11) Liu, Y.; Jin, Z.;Wang, Y.; Cui, R. L.; Sun, H.; Peng, F.;Wei, L.;Wang, Z. X.; Liang, X. L.; Peng, L. M.; Li, Y. Adv. Funct. Mater. 2011, 21, 986. doi: 10.1002/adfm.201002086
(12) Hulicova-Jurcakova, D.; Kodama, M.; Shiraishi, S.; Hatori, H.;Zhu, Z. H.; Lu, G. Q. Adv. Funct. Mater. 2009, 19, 1800. doi: 10.1002/adfm.v19:11
(13) Inagakia, M.; Konno, H.; Tanaike, O. J. Power Sources 2010,195, 7880.
(14) Lota, G.; Grzyb, B.; Machnikowsk, H.; Machnikowski, J.;Frackowiak, E. Chem Phys. Lett. 2005, 404, 53. doi: 10.1016/j.cplett.2005.01.074
(15) Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.;Dai, S. Adv. Mater. 2011, 23, 4828. doi: 10.1002/adma.v23.42
(16) Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009,323, 760. doi: 10.1126/science.1168049
(17) Tang, Y.; Allen, B. L.; Kauffman, D. R.; Alexander, S. J. Am. Chem. Soc. 2009, 131, 13200. doi: 10.1021/ja904595t
(18) Yang, S.; Zhao, G. L.; Khosravi, E. J. Phys. Chem. C 2010, 114,3371.
(19) Sen, R.; Satishkumar, B. C.; Govindaraj, A.; Harikumar, K. R.;Renganathan, M. K.; Rao, C. N. R. J. Mater. Chem. 1997, 7,2335. doi: 10.1039/a705891h
(20) Shirazi, Y.; Tofighy, M. A.; Mohammadi, T.; Pak, A. Appl. Sur. Sci. 2011, 257, 7359. doi: 10.1016/j.apsusc.2011.03.146
(21) Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.;Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.;Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.;Smalley, R. E. Science 1998, 280, 1253. doi: 10.1126/science.280.5367.1253
(22) Hiura, H.; Ebbesen, T.W.; Tanigaki, K. Adv. Mater. 1995, 7,275.
(23) Arrigo, R.; Havecker, M.; Schlogl, R.; Su, D. S. Chem. Commun. 2008, 4891.
(24) Halder, A.; Sharma, S.; Hegde, M. S.; Ravishankar, N. J. Phys. Chem. C 2009, 113, 1466. doi: 10.1021/jp8072574
(25) Tessonnier, J. P.; Rosenthal, D.; Girgsdies, F.; Amadou, J.;Begin, D.; Pham-Huu, C.; Su, D. S.; Schlogl, R. Chem. Commun. 2009, 7158.
(26) Li, L. X.; Liu, Y. C.; Geng, X.; An, B. G. Acta Phys. -Chim. Sin.2011, 27, 443. [李莉香, 刘永长, 耿新, 安百刚. 物理化学学报, 2011, 27, 443.] doi: 10.3866/PKU.WHXB20110225
(27) Niwa,H.;Horiba,K.;Harada,Y.;Oshima,M.; Ikeda, T.; Terakura,K.; Ozaki, J. I.; Miyata, S. J. Power Sources 2009, 187, 93.doi: 10.1016/j.jpowsour.2008.10.064

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[4] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[5] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[6] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[7] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[8] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[9] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[10] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.
[11] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.
[12] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[13] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 481-492.
[14] LIN You-Cheng, ZHONG Xin-Xian, HUANG Han-Xing, WANG Hong-Qiang, FENG Qi-Peng, LI Qing-Yu. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. Chim. Sin., 2016, 32(2): 474-480.
[15] LI Ya-Jie, NI Xing-Yuan, SHEN Jun, LIU Dong, LIU Nian-Ping, ZHOU Xiao-Wei . Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 493-502.