Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (01): 43-54    DOI: 10.3866/PKU.WHXB201211121
Origin of the cis-Effect: a Density Functional Theory Study of Doubly Substituted Ethylenes
ZHAO Dong-Bo1, RONG Chun-Ying1, JENKINS Samantha1, KIRK Steven R.1, YIN Du-Lin1, LIU Shu-Bin1,2
1 Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China;
2 Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, U. S. A.
Download:   PDF(1432KB) Export: BibTeX | EndNote (RIS)      


It is well known that the trans isomer of a doubly substituted ethylene is more stable than its cis counterpart because of the more favorable electrostatic and steric interactions in the trans conformer. Exceptions do exist nevertheless. 1,2-Difluoroethylene is such an example, so is 1,2-dichloroethylene. The unusual stability of the cis isomer of these doubly substituted ethylene compounds is referred to as the cis-effect, whose nature and origin are still not well understood. In this work, using 12 simple molecules, XHC=CHY (X, Y=F, Cl, Br, CN, CH3, OCH3, C2H6), as examples, we perform systematic studies to investigate the validity, nature, and origin of this effect. Among the systems studied, 9 of them exhibit the existence of the cis-effect and the remaining 3 systems are conventional systems used for the comparison purpose. We employ a large number of density functionals and basis sets to confirm its validity. We also use a few well-established analysis tools, such as natural bond orbital (NBO), energy decomposition analysis (EDA), density functional reactivity theory (DFRT), and non-covalent interaction (NCI) analysis, to pinpoint its nature and origin. We found that there exists a weak but attractive non-covalent interaction between the two substituting groups in the cis conformer. We also found that electrostatic, steric, and kinetic energies all play important roles for the validity of the cis-effect. Nevertheless, none of these quantities can be solely used as the single reason governing the general validity of the cis-effect, suggesting that the origin of the effect is complicated and its validity results from compound interactions from a number of interactions. In this work, we employ two-variable explanations to justify its validity through the electrostatic interaction plus steric effect or kinetic energy, with which reasonable fits with R2=0.86-0.87 were obtained.

Key wordsDensity functional theory      cis-Effect      Natural bond orbital analysis      Steric effect      Non-covalent interaction     
Received: 21 August 2012      Published: 12 November 2012
MSC2000:  O641  

The project was supported by the‘XiaoXiang Scholar’Talents Foundation of Hunan Normal University, China (23040609), Hunan Provincial Innovation Foundation for Postgraduate, China (CX2012B223), and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China. The Hundred Talents Foundation of Hunan Province is gratefully acknowledged for the financial support to S. J. and S. R. K.

Cite this article:

ZHAO Dong-Bo, RONG Chun-Ying, JENKINS Samantha, KIRK Steven R., YIN Du-Lin, LIU Shu-Bin. Origin of the cis-Effect: a Density Functional Theory Study of Doubly Substituted Ethylenes. Acta Phys. Chim. Sin., 2013, 29(01): 43-54.

URL:     OR

(1) (a) Craig, N. C.; Entemann, E. A. J. Am. Chem. Soc. 1961, 83,3047. doi: 10.1021/ja01475a019
(b) Craig, N. C.; Overend, J. J. Chem. Phys. 1969, 51, 1127.
(c) Craig, N. C.; Piper, L. G.; Wheeler, V. L. J. Phys. Chem.1971, 76, 1453.
(d) Craig, N. C.; Chen, A.; Suh, K. H.; Klee, S.; Mellau, G.;Winnewiser, B. P.;Winnewisser, M. J. Phys. Chem. A 1997,101, 9302.
(e) Craig, N. C.; Brandon, D.W.; Stone, S. C.; Lafferty,W. J.J. Phys. Chem. 1992, 96, 1598.
(2) Craig, N. C.; Lo, Y. S.; Piper, L. G.; Wheeler, J. C. J. Phys. Chem. 1970, 74, 1712. doi: 10.1021/j100703a011
(3) (a)Wood, R. E.; Stevenson, D. P. J. Am. Chem. Soc. 1941, 63,1650. doi: 10.1021/ja01851a042
(b) Gardner, D. V.; McGreer, D. E. Can. J. Chem. 1970, 48,2104.
(4) (a) Salomma, P.; Nissi, P. Acta Chim. Scand. 1967, 21, 1386.doi: 10.3891/acta.chem.scand.21-1386
(b) Crump, J.W. J. Org. Chem. 1963, 28, 953.
(c) Harwell, K. E.; Hatch, L. F. J. Am. Chem. Soc. 1955, 77,1682.
(5) Waldron, J. T.; Snyder,W. H. J. Am. Chem. Soc. 1973, 95, 5491.doi: 10.1021/ja00798a010
(6) Huber-Wälchli, P.; Günthard, H. H. Spectrochim. Acta 1981,37, 285. doi: 10.1016/0584-8539(81)80159-6
(7) Durig, J. R.; Liu, J.; Little, T. S.; Kalasinsky, V. F. J. Phys. Chem. 1992, 96, 8224. doi: 10.1021/j100200a006
(8) Connor, T. M.; McLauchlan, K. A. J. Phys. Chem. 1965, 69,1888. doi: 10.1021/j100890a018
(9) Epiotis, N. D. J. Am. Chem. Soc. 1973, 95, 3087. doi: 10.1021/ja00791a001
(10) Kollman, P. A. J. Am. Chem. Soc. 1974, 96, 4363. doi: 10.1021/ja00821a003
(11) Bemardi, F.; Bottoni, A.; Epiotis, N. D.; Guena, M. J. Am. Chem. Soc. 1978, 100, 6018. doi: 10.1021/ja00487a007
(12) (a) Cremer, D. J. Am. Chem. Soc. 1981, 103, 3633. doi: 10.1021/ja00403a003
(b) Cremer, D. Chem. Phys. Lett. 1981, 81, 481.
(13) Carlos, J. L.; Karl, R. R.; Bauer, S. H. J. Chem. Soc. Faraday Trans. 2 1974, 2, 177.
(14) Gandhi, S. R.; Benzel, M. A.; Dykstra, C. E.; Fukunaga, T.J. Phys. Chem. 1982, 86, 3121. doi: 10.1021/j100213a013
(15) Saebø, S.; Sellers, H. J. Phys. Chem. 1988, 92, 4269. doi: 10.1021/j100326a006
(16) Dixon, D. A.; Smart, B. E.; Fukunaga, T. Chem. Phys. Lett.1986, 125, 447. doi: 10.1016/0009-2614(86)87076-2
(17) Yamamoto, T.; Kaneno, D.; Tomoda, S. Chem. Lett. 2005, 34,1190. doi: 10.1246/cl.2005.1190
(18) Parr, R. G.; Yang,W. Density-Functional Theory of Atoms andMolecules. In International Series of Monographs on Chemistry;Clarendon Press: Oxford, England, 1989; Vol.16, p 333.
(19) Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247
(20) Liu, S. B.; Govind, N.; Pedersen, L. G. J. Chem. Phys. 2008,129, 094104. doi: 10.1063/1.2976767
(21) Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010, 114,5913. doi: 10.1021/jp101329f
(22) Ess, D. H.; Liu, S. B.; DeProft, F. J. Phys. Chem. A 2010, 114,12952. doi: 10.1021/jp108577g
(23) Tsirelson,V. G.; Stash, A. I.; Liu, S. B. J. Chem. Phys. 2010,133, 114110. doi: 10.1063/1.3492377
(24) Huang, Y.; Zhong, A. G.; Yang, Q. S.; Liu, S. B. J. Chem. Phys.2011, 134, 084103. doi: 10.1063/1.3555760
(25) Torrent-Sucarrat, M.; Liu, S. B.; DeProft, F. J. Phys. Chem. A2009, 113, 3698. doi: 10.1021/jp8096583
(26) Hohenberg, P.; Kohn,W. Phys. Rev. B 1964, 136, 864.doi: 10.1103/PhysRev.136.B864
(27) Becke, A. D. Modern Electronic Structure Theory; Yarkony, D.R. Ed.;World Scientific: River Edge, N. J., 1995; pp 1022-1046.
(28) Cohen, A. J.; Mori-Sánchez, P.; Yang,W. Science 2008, 321,792. doi: 10.1126/science.1158722
(29) Xu, H. Y.;Wang,W. Acta Phys. -Chim. Sin. 2011, 27, 2565.[许惠英, 王维. 物理化学学报, 2011, 27, 2565.] doi: 10.3866/PKU.WHXB20111127
(30) Bader, R. F.W.; Essén, H. J. Chem. Phys. 1984, 80, 1943. doi: 10.1063/1.446956
(31) Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García,J.; Cohen, A. J.; Yang,W. J. Am. Chem. Soc. 2010, 132, 6498.doi: 10.1021/ja100936w
(32) Geerlings, P.; DeProft, F.; Langenaeker,W. Chem. Rev. 2003,103, 1793. doi: 10.1021/cr990029p
(33) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
(34) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358.doi: 10.1063/1.464303
(35) Dunning, T. H., Jr.; Hay, P. J. Modern Theoretical Chemistry;Schaefer, H. F., III. Ed.; Plenum: New York, 1976; Vol. 3, pp1-28.
(36) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian-09,Revision B.01; Gaussian Inc.:Wallingford, CT, 2009.
(37) NBO Version 3.1, Glendening, E. D.; Reed, A. E.; Carpenter, J.E.;Weinhold, F. doi: 10.3878/j.issn.1006-9585.2012.11212
(38) Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma,T. P.; van Dam, H. J. J.;Wang, D.; Nieplocha, J.; Apra, E.;Windus, T. L.; De Jong,W. A. Comput. Phys. Commun. 2010,181, 1477. doi: 10.1016/j.cpc.2010.04.018
(39) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. doi: 10.1063/1.456153
(40) NBO Version 5.0, Glendening, E. D.; Badenhoop, J. K.; Reed,A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.;Weinhold, F. (Theoretical Chemistry Institute, University ofWisconsin, Madison, WI, 2001).
(41) Weinhold, F.; Landis, C. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge UniversityPress: UK, 2005.
(42) Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.;Piquemal, J. P.; Beratan, D. N.; Yang,W. J. Chem. Theory Comput. 2011, 7, 625. doi: 10.1021/ct100641a
(43) Humphrey,W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996,14, 133.
(44) AIMAll (Version 11.08.23), Keith, T. A. TK Gristmill Software,Overland Park KS, USA, 2012 (; Bader, R.F.W. Atoms inMolecules: AQuantum Theory; Oxford UniversityPress: Oxford, 1990; Popeplier, P. L.; Hall, P. Atoms in Molecules: An Introduction; London, 2000; Matta, C. F., Boyd, R. J. Eds.;The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design;Wiley:Weinham, 2007.
(45) Feller, D.; Peterson, K. A.; Dixon, D. A. J. Phys. Chem. A 2011,115, 1440.
(46) (a) Liu, S. B. Phys. Rev. A 1996, 54, 1328. doi: 10.1103/PhysRevA.54.1328
(b) Liu, S. B.; Parr, R. G. Phys. Rev. A 1996, 53, 2211.
(c) Nagy, A.; Liu, S. B.; Parr, R. G. Phys. Rev. A 1999, 59, 3349.
(d) Liu, S. B.; Morrison, R. C.; Parr, R. G. J. Chem. Phys. 2006,125, 174109.
(47) (a) Liu, S. B.; Pedersen, L. G. J. Phys. Chem. A 2009, 113,3648. doi: 10.1021/jp811250r
(b) Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys.2009, 131, 164107.
(c) Burger, S. K.; Liu, S. B.; Ayers, P.W. J. Phys. Chem. A 2011,115, 1293.
(d) Huang, Y.; Liu, L.; Liu,W.; Liu, S. G.; Liu, S. B. J. Phys. Chem. A 2011, 115, 14697.
(e) Huang, Y.; Liu, L.; Liu, S. B. Chem. Phys. Lett. 2012, 527,73.

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[6] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[7] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[8] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[9] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[10] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.
[11] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[12] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. Chim. Sin., 2017, 33(3): 530-538.
[13] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Phys. Chim. Sin., 2017, 33(3): 548-553.
[14] LI Gui-Xia, JIANG Yong-Chao, LI Peng, PAN Wei, LI Yong-Ping, LIU Yun-Jie. Helium Separation Performance of the Rhombic-Graphyne Monolayer Membrane: Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2219-2226.
[15] YE Bin, ZHANG Jian, GAO Cai, TANG Jing-Chun. Experimental and Theoretical Analysis of 1H NMR on Double-Carbon Alcohol Aqueous Solutions[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1978-1988.