Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (02): 358-364    DOI: 10.3866/PKU.WHXB201211143
Effects of Na+ in Dilution Steam and Coke Deposition on Catalytic Performance of Methanol-to-Propylene Catalysts
WANG Feng1, YAN Shu-Jun1, YONG Xiao-Jing1, LUO Chun-Tao1, ZHANG Qing2, WEN Peng-Yu2, GONG Yan-Jun2, DOU Tao2
1 Research and Development Division, Shenhua Ningxia Coal Industry Group Co. Ltd., Yinchuan 750411, P. R. China;
2 The Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Beijing 102249, P. R. China
Download:   PDF(783KB) Export: BibTeX | EndNote (RIS)      


The effects of Na+ in dilution steam and coke deposition on the physicochemical properties andcatalytic performance of ZSM-5 catalysts for the methanol-to-propylene (MTP) reaction were investigated.The deactivated and regenerated catalysts were characterized by means of X-ray diffraction (XRD),scanning electron microscopy (SEM), X-ray fluorescence (XRF) spectrum, nitrogen adsorption/desorption,temperature-programmed desorption of ammonia (NH3-TPD), and thermogravimetry (TG). Their catalyticperformance for MTP reaction was tested in a continuous flow fixed-bed micro-reactor at 470℃, 101325Pa, and with methanol weight hourly space velocity (WHSV) in the range of 1.0-3.0 h-1. The resultsindicated that the catalyst crystal structure and morphology was not significantly altered after 970 h onstream. In the MTP reaction, Na+ in the dilution steam can easily enter the pore channels of the catalyst,and partially replace H protons, thereby gradually decreasing the amount of acidity and acid strength of thecatalyst, which eventually causes deactivation. In addition, coke deposits on the catalyst surface blocking its micropores are the main reason for deactivation of the MTP catalyst. Coke deposits are mostlyeliminated through the burning charcoal regeneration process. The effect of framework dealumination fromthe catalyst by steam in the MTP process is slow but more serious. Through regeneration and ionexchange process, the catalytic activity of the deactivated catalyst can be fully restored. The conversion ofmethanol is consistently above 99%, and propylene selectivity is greater than 46% even after 470 h onstream. With increasing reaction time, the propylene selectivity gradually increases, while ethyleneselectivity gradually decreases.

Key wordsMethanol-to-propylene catalyst      Coke deposition      Regeneration      Dilution steam     
Received: 12 September 2012      Published: 14 November 2012
MSC2000:  O643  

The project was supported by the International S&T Coopperation Program of China (2010DFB40440) and S&T Programs of Ningxia, China (Industrial Operation and Key Technology Research for 500000 t/a Coal-Based Polypropylene Plant).

Cite this article:

WANG Feng, YAN Shu-Jun, YONG Xiao-Jing, LUO Chun-Tao, ZHANG Qing, WEN Peng-Yu, GONG Yan-Jun, DOU Tao. Effects of Na+ in Dilution Steam and Coke Deposition on Catalytic Performance of Methanol-to-Propylene Catalysts. Acta Phys. Chim. Sin., 2013, 29(02): 358-364.

URL:     OR

(1) Hu, S.; Zhang, Q.; Xia, Z.; Gong, Y. J.; Xu, J.; Deng, F.; Dou, T.Acta Phys. -Chim. Sin. 2012, 28, 2705. [胡思, 张卿,夏至, 巩雁军, 徐君, 邓风, 窦涛. 物理化学学报,2012, 28, 2705.] doi: 10.3866/PKU.WHXB201207171
(2) Mao, D. S.; Guo, Q. S.; Meng, T. Acta Phys. -Chim. Sin. 2010,26, 338. [毛东森, 郭强胜, 孟涛. 物理化学学报, 2010, 26,338.] doi: 10.3866/PKU.WHXB20100208
(3) Wang, F.; Zhang, Q.; Hu, S.; Gong, Y. J.; Dou, T. Industrial Catalysis 2012, 20, 17. [王峰, 张卿, 胡思, 巩雁军,窦涛. 工业催化, 2012, 20, 17.]
(4) Sun, C.; Du, J. M.; Liu, J.; Yang, Y. S.; Ren, N.; Shen,W.; Xu,H. L.; Tang, Y. Chem. Commun. 2010, 46, 2671. doi: 10.1039/b925850g
(5) Lee, Y. J.; Kim, Y.W.; Viswanadham, N.; Jun, K.W.; Bae, J.W.Appl. Catal. A: Gen. 2010, 374, 18. doi: 10.1016/j.apcata.2009.11.019
(6) Firoozi, M.; Baghalha, M.; Asadi, M. T. Catal. Commun. 2009,10, 1582. doi: 10.1016/j.catcom.2009.04.021
(7) Zhang, S. H.; Zhang, B. L.; Gao, Z. X.; Han, Z. Y. Reac. Kinet. Mech. Catal. 2010, 99, 447.
(8) Liu, J.; Zhang, C. X.; Shen, Z. H.; Hua,W. M.; Tang, Y.; Shen,W.; Yue, Y. H.; Xu, H. L. Catal. Commun. 2009, 10, 1506. doi: 10.1016/j.catcom.2009.04.004
(9) Mokrani, T.; Scurrell, M. Catal. Rev. -Sci. Eng. 2009, 51, 1. doi: 10.1080/01614940802477524
(10) Valle, B.; Alonso, A.; Atutxa, A. G.; Gayubo, J. B. Catal. Today2005, 106, 115.
(11) Vedrine, J. C.; Auroux, A.; Dejaifve, P.; Ducarme, V.; Hoser, H.;Zhou, S. J. Catal. 1982, 73, 147. doi: 10.1016/0021-9517(82)90089-6
(12) Kaarsholm, M.; Joensen, F.; Nerlov, J.; Cennib, R.; Chaoukia,J.; Patiencea, G. S. Chem. Eng. Sci. 2007, 62, 5527. doi: 10.1016/j.ces.2006.12.076
(13) Zhao, T. S.; Takemoto, T.; Tsubaki, N. Catal. Commun. 2006, 7,647. doi: 10.1016/j.catcom.2005.11.009
(14) Bhatia, S.; Beltramini. J.; Do, D. D. Catal. Rcv. -Sci. Eng. 1989,90, 481.
(15) Langner, B. E. Ind. Eng. Chem. Pro. Des. Dev. 1981, 20, 326.doi: 10.1021/i200013a023
(16) Bibby, D. M.; Milestone, N. B.; Patterson, J. E.; Aldridge, L. P.J. Catal. 1986, 97, 493. doi: 10.1016/0021-9517(86)90020-5
(17) McLellan, G. D.; Howe, R. F.; Parker, L. M.; Bibby, D. M.J. Catal. l986, 99, 486.
(18) Wen, P. Y.; Mei, C. S.; Liu, H. X.; Yang,W. M.; Chen, Q. L.Acta Petrolei Sinica (Petroleum Processing Section) 2008, 24,446. [温鹏宇, 梅长松, 刘红星, 杨为民, 陈庆龄. 石油学报(石油加工), 2008, 24, 446.]
(19) Sexton, B. A.; Hughes, A. E.; Bibby, D. M. J. Catal. 1988, 109,126. doi: 10.1016/0021-9517(88)90190-X
(20) Lee, K. Y.; Lee, H. K.; Ihm, S. K. Top. Catal. 2010, 53, 247. doi: 10.1007/s11244-009-9412-0
(21) Jiang, Y.; Liang, J.; Zhao, S. Q. Chin. J. Catal. 1994, 15, 463.[蒋毅, 梁鹃, 赵素琴. 催化学报, 1994, 15, 463.]
(22) Wang, X. Q.;Wang, X. S. Acta Petrolei Sinica (Petroleum Processing Section) 1994, 10, 38. [王学勤, 王祥生. 石油学报(石油加工), 1994, 10, 38.]
(23) Lu, M.; Sun, H. M.; Yang,W. M. Acta Petrolei Sinica (Petroleum Processing Section) 2001, 17, 59. [陆铭, 孙洪敏, 杨为民. 石油学报(石油加工), 2001, 17, 59.]
(24) Bjørgen, M.; Svelle, S.; Joensen, F.; Nerlov, J.; Kolboe, S.;Bonino, F.; Palumbo, L.; Bordiga, S.; Olsbye, U. J. Catal. 2007,249, 195. doi: 10.1016/j.jcat.2007.04.006
(25) Bjørgen, M.; Joensen, F.; Lillerud, K. P.; Olsbye, U.; Svelle, S.Catal. Today 2009, 142, 90. doi: 10.1016/j.cattod.2009.01.015
(26) Svelle, S.; Joensen, F.; Nerlov, J.; Olsbye, U.; Lillerud, K. P.;Kolboe, S.; Bjørgen, M. J. Am. Chem. Soc. 2006, 128, 14770.doi: 10.1021/ja065810a
(27) Zhan, Y.W.; Zhou, Y. M.; Qiu, A. D.;Wang, Y.; Xu, Y.;Wu, P.C. Acta Phys. -Chim. Sin. 2006, 22, 672. [张一卫, 周钰明, 邱安定, 王玉, 许艺, 吴沛成. 物理化学学报, 2006, 22, 672.]doi: 10.1016/S1872-1508(06)60026-0
(28) Chu, C. T.W.; Socha, R. F. J. Catal. 1984, 86, 289. doi: 10.1016/0021-9517(84)90374-9
(29) Kim, J.; Choi, M.; Ryoo, R. J. Catal. 2010, 269, 219. doi: 10.1016/j.jcat.2009.11.009
(30) Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R.Nature 2009, 461, 246. doi: 10.1038/nature08288

[1] HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1785-1794.
[2] LIU Jian-Xin, WANG Yun-Fang, WANG Ya-Wen, FAN Cai-Mei. Synthesis, Regeneration and Photocatalytic Activity under Visible-Light Irradiation of Ag/Ag3PO4/g-C3N4 Hybrid Photocatalysts[J]. Acta Phys. Chim. Sin., 2014, 30(4): 729-737.
[3] YAO Min, HU Si, WANG Jian, DOU Tao, WU Yong-Ping. Size Effect of HZSM-5 Zeolite on Catalytic Conversion of Methanol to Propylene[J]. Acta Phys. Chim. Sin., 2012, 28(09): 2122-2128.
[4] SUN Tao, GUO Yue, LI Wen-Cui, LU An-Hui. Synthesis of Hydrophobic Porous Silica for Removal of Organic Contaminations from Water[J]. Acta Phys. Chim. Sin., 2012, 28(06): 1432-1438.
[5] MAAi-Jing, WANG Shao-Zeng, ZOU Hong-Hu, MENG Ming, LI Zhi-Jun, BAO Jun, LI Xin-Gang. The Performance of the NOx Storage Capacity and Sulfur Tolerance of the La0.7Sr0.3Co1-xFexO3 Catalyst[J]. Acta Phys. Chim. Sin., 2012, 28(06): 1474-1480.
[6] TIAN Tao, QIAN Wei-Zhong, TANG Xiao-Ping, YUN Song, WEI Fei. Deactivation of Ag/ZSM-5 Catalyst in the Aromatization of Methanol[J]. Acta Phys. Chim. Sin., 2010, 26(12): 3305-3309.
[7] GAO Jie;WANG Shi-Zhong. Study of Ni Composite Anodes for Dimethyl Ether Fuel Cell[J]. Acta Phys. Chim. Sin., 2006, 22(07): 851-855.
[8] Li Chun-Lin;Fu Yi-Lu;Bian Guo-Zhu. Surface Basicity and Catalytic Performance on Ni/Ce-Zr-Al-O Catalyst for CO2+CH4 Reforming[J]. Acta Phys. Chim. Sin., 2003, 19(10): 902-906.
[9] Wang Gang; Tao Zu-Yi. Ion Exchange Kinetics of Regeneration for Weak Basic Anion Exchanger[J]. Acta Phys. Chim. Sin., 1991, 7(04): 485-489.