Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (02): 305-310    DOI: 10.3866/PKU.WHXB201211201
Synthesis and Electrochemical Characterization of RuO2·xH2O/Graphite Nanosheet Composite Array Electrodes for Supercapacitors
HU Ying-Ying, HU Zhong-Ai, ZHANG Ya-Jun, LU Ai-Lian, XU Huan, ZHANG Zi-Yu, YANG Yu-Ying, LI Li, WU Hong-Ying
Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
Download:   PDF(2774KB) Export: BibTeX | EndNote (RIS)      


We used electrochemical exfoliation to construct graphite nanosheet (GNS) arrays, in which the varying number of nanosheet layers were parallel to each other and perpendicular to the carbon substrate. Hydrous ruthenium oxide (RuO2·xH2O) was then loaded directly on the surface of nanosheets using cathodic reduction electrodeposition, resulting in the formation of RuO2·xH2O/GNS composite array electrodes. Electrochemical measurements showed that the composite array electrodes exhibited excellent capacitive behaviors, and achieved specific capacitance values as high as 4226 F·m-2 in the potential window up to 0.9 V, with a scan rate of 5 mV·s-1 in 0.5 mol·L-1 H2SO4 solution. The RuO2·xH2O/GNS composite array electrodes showed good cycling abilities, and maintained 94.18% of their maximum performance after 20000 cycles.

Key wordsSupercapacitor      Graphite nanosheet      RuO2      Electrodeposition      Array electrode     
Received: 07 September 2012      Published: 20 November 2012
MSC2000:  O646  
Cite this article:

HU Ying-Ying, HU Zhong-Ai, ZHANG Ya-Jun, LU Ai-Lian, XU Huan, ZHANG Zi-Yu, YANG Yu-Ying, LI Li, WU Hong-Ying. Synthesis and Electrochemical Characterization of RuO2·xH2O/Graphite Nanosheet Composite Array Electrodes for Supercapacitors. Acta Phys. Chim. Sin., 2013, 29(02): 305-310.

URL:     OR

(1) Conway, B. E. Electrochem. Soc. 1991, 138, 1539. doi: 10.1149/1.2085829
(2) Mayer, S. T.; Pekala, R.W.; Kaschmitter, J. L. Electrochem. Soc. 1993, 140, 446. doi: 10.1149/1.2221066
(3) Ishikawa, M.; Morita, M.; Ihara, M.; Matsuda, Y. Electrochem. Soc. 1994, 141, 1730. doi: 10.1149/1.2054995
(4) Liu, Y.; Zhao,W.W.; Zhang, X. G. Electrochim. Acta 2008, 53,3296. doi: 10.1016/j.electacta.2007.11.022
(5) Naoi, K.; Simon, P. Electrochem. Soc. 2008, 7, 34.
(6) Zheng, J. P.; Cygan, P. J.; Jow, T. R. Electrochem. Soc. 1995,142, 2699. doi: 10.1149/1.2050077
(7) McKeown, D. A.; Hagans, P. L.; Carette, L. P. L.; Russell, A. E.;Swider, K. E.; Rolison, D. R. J. Phys. Chem. B 1999, 103, 4825.doi: 10.1021/jp990096n
(8) Liu, X. M.; Zhang, X. G. Electrochim. Acta 2004, 49, 229. doi: 10.1016/j.electacta.2003.08.005
(9) Wang, C. C.; Hu, C. C. Electrochem. Soc. 2005, 152, A370.
(10) Jeong, Y. U.; Manthiram, A. Electrochem. Soc. 2001, 148, A189.
(11) Wang, Y. G.; Zhang, X. G. Electrochim. Acta 2004, 49, 1957.doi: 10.1016/j.electacta.2003.12.023
(12) Hu, C. C.; Chen,W. C.; Chang, K. H. Electrochem. Soc. 2004,151, A281.
(13) Shen, C. F.; Zheng, M. B.; Xue, L. P.; Li, N.W.; Lü, H. L.;Zhang, S. T.; Cao, J. M. Chin. J. Inorg. Chem. 2011, 3, 27.[沈辰飞, 郑明波, 薛露平, 李念武, 吕洪岭, 张松涛, 曹洁明.无机化学学报, 2011, 3, 27.]
(14) Bi, R. R.;Wu, X. L.; Cao, F. F.; Jiang, L. Y.; Guo, Y. G.;Wan, L.J. Phys. Chem. C 2010, 114, 2448. doi: 10.1021/jp9116563
(15) Su, Y. F.;Wu, F.; Bao, L. Y.; Yang, Z. H. New Carbon Materials2007, 22, 53. doi: 10.1016/S1872-5805(07)60007-9
(16) Li, J.;Wang, X. Y.; Huang, Q. H.; Dai, C. L.; Gamboa, S.;Sebastian, P. J. Appl. Electrochem. 2007, 37, 1127.
(17) Paek, S. M.; Yoo, E. J.; Honma, I. Nano Letters 2009, 9, 72. doi: 10.1021/nl802484w
(18) Nethravathi, C.; Rajamathi, J. T.; Ravishankar, N.; Shivakumara,C.; Rajamathi, M. Langmuir 2008, 24, 8240. doi: 10.1021/la8000027
(19) Gujar, T. P.; Kim,W. Y.; Puspitasari, I.; Jung, K. D.; Joo, O. S.Int. J. Electrochem. Sci. 2007, 2, 662.
(20) Sun, X. M.; Li, Y. D. Angew. Chem. Int. Edit. 2004, 43, 597.
(21) Lee, S. H.; Seo, S. D.; Jin, Y. H.; Shim, H.W.; Kim, D.W.Electrochem. Commun. 2010, 12, 1419. doi: 10.1016/j.elecom.2010.07.036
(22) Liu, N.; Luo, F.;Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. Adv. Funct. Mater. 2008, 18, 1518.
(23) Lang, X. Y.; Hirata, A.; Fujita, T.; Chen, M.W. Nature Nanotechnology 2011, 6, 232. doi: 10.1038/nnano.2011.13
(24) Pang, S. C.; Anderdson, M. A.; Chapman, T.W. Electrochem. Soc. 2000, 147, 444. doi: 10.1149/1.1393216

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[4] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[5] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[6] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[7] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[8] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.
[9] JIANG Jin-Long, ZHANG Xia, DU Jin-Fang, WANG Qiong, DAI Jian-Feng, WEI Zhi-Qiang. Electrochemical Deposition and Field Emission Properties of Graphene/Diamond-Like Carbon Nanocomposite Films[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1839-1843.
[10] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[11] LIN You-Cheng, ZHONG Xin-Xian, HUANG Han-Xing, WANG Hong-Qiang, FENG Qi-Peng, LI Qing-Yu. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. Chim. Sin., 2016, 32(2): 474-480.
[12] LI Ya-Jie, NI Xing-Yuan, SHEN Jun, LIU Dong, LIU Nian-Ping, ZHOU Xiao-Wei . Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 493-502.
[13] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 481-492.
[14] REN Zhong-Hua, LU Yue-Xiang, YUAN Hang, WANG Zhe, YU Bo, CHEN Jing. Charge-Transfer Reactions at the Interface between Atmospheric- Pressure Microplasma Anode and Ionic Solution[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1215-1218.
[15] LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping. Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials[J]. Acta Phys. Chim. Sin., 2015, 31(4): 676-684.