Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (02): 411-417    DOI: 10.3866/PKU.WHXB201211211
CATALYSIS AND SURFACE SCIENCE     
Controllable Synthesis and Photocatalytic Activity of Bi4Ti3O12 Particles with Different Morphologies
LIN Xue1, GUAN Qing-Feng2, LIU Ting-Ting1, ZHANG Yao1, ZOU Chun-Jie1
1 College of Chemistry, Key Laboratory of Preparation and Application Environmentally Friendly Materials of the Ministry of Education, Jilin Normal University, Siping 136000, Jilin Province, P. R. China;
2 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, P. R. China
Download:   PDF(1231KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Bismuth titanate (Bi4Ti3O12, BIT) particles with different morphologies were synthesized by a one-step hydrothermal process and their optical and photocatalytic properties were investigated. The crystal structure and microstructures were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). XRD patterns demonstrate that the as-prepared BIT samples have layered perovskite structure. FESEM shows that BIT crystals can be fabricated in different morphologies by simply manipulating the reaction parameters of the hydrothermal process. The UV-visible diffuse reflectance spectra (UV-Vis DRS) reveal that the band gaps of the BIT photocatalysts are about 2.88-2.93 eV. The as-prepared BIT photocatalysts exhibit higher photocatalytic activities toward the degradation of methyl orange (MO) under visible light irradiation (λ>420 nm) when compared with traditional N-doped TiO2 (N-TiO2). The influence of morphology on the photocatalytic properties of BIT was also studied. BIT nanobelt structures displayed the highest photocatalytic activity. Up to 95.0% MO was decolorized after visible light irradiation for 360 min.



Key wordsBi4Ti3O12      Nanosphere      Nanoplate      Nanobelt      Controllable synthesis      Photocatalytic degradation     
Received: 14 September 2012      Published: 21 November 2012
MSC2000:  O643  
Fund:  

The project was supported by the Key Laboratory of Preparation and Application of Environmentally Friendly Materials of the Ministry of Education of China and Doctoral Scientific Research Project of Jilin Normal University, China.

Cite this article:

LIN Xue, GUAN Qing-Feng, LIU Ting-Ting, ZHANG Yao, ZOU Chun-Jie. Controllable Synthesis and Photocatalytic Activity of Bi4Ti3O12 Particles with Different Morphologies. Acta Phys. Chim. Sin., 2013, 29(02): 411-417.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201211211     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I02/411

(1) Uyguner-Demirel, C. S.; Bekbolet, M. Chemosphere 2011, 84,1009. doi: 10.1016/j.chemosphere.2011.05.003
(2) Jiang, Y. J.; Gao, Q. M.; Yu, H. G.; Chen, Y. R.; Deng, F.Microporous Mesoporous Mat. 2007, 103, 316. doi: 10.1016/j.micromeso.2007.02.024
(3) Jin, X. L.; Li, Y. F.; Yu, C.; Ma, Y. X.; Yang, L. Q.; Hu, H. Y.J. Hazard. Mater. 2011, 198, 247. doi: 10.1016/j.jhazmat.2011.10.040
(4) Lu, S.Y.;Wu, D.;Wang, Q. L.; Yan, J. H.; Buekens, A. G.; Cen,K. F. Chemosphere 2011, 82, 1215. doi: 10.1016/j.chemosphere.2010.12.034
(5) Xie, J.;Wang, H.; Duan, M. Acta Phys. -Chim. Sin. 2011, 27 (1),193. [谢娟, 王虎, 段明. 物理化学学报, 2011, 27 (1),193.] doi: 10.3866/PKU.WHXB20110124
(6) Yang, X. H.; Liu, C.; Liu, J. K.; Zhu, Z. C. Acta Phys. -Chim. Sin. 2011, 27 (12), 2939. [杨小红, 刘畅, 刘金库, 朱子春.物理化学学报, 2011, 27 (12), 2939.] doi: 10.3866/PKU.WHXB20112939
(7) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2071. [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.] doi: 10.3866/PKU.WHXB20081123
(8) Xu, D.; Gao, A. M.; Deng,W. L. Acta Phys. -Chim. Sin. 2008,24 (7), 1219. [许迪, 高爱梅, 邓文礼. 物理化学学报, 2008,24 (7), 1219.] doi: 10.3866/PKU.WHXB20080717
(9) Li, B. X.;Wang, Y. F.; Liu, T. X. Acta Phys. -Chim. Sin. 2011,27 (12), 2946. [李本侠, 王艳芬, 刘同宣. 物理化学学报,2011, 27 (12), 2946.] doi: 10.3866/PKU.WHXB20112946
(10) Zhang, L. S.;Wang, H. L.; Chen, Z. G.;Wong, P. K.; Liu, J. S.Appl. Catal. B: Environ. 2011, 106, 1.
(11) Buscaglia, M. T.; Sennour, M.; Buscaglia, V.; Bottino, C.;Kalyani, V.; Nanni, P. Cryst. Growth Des. 2011, 11, 1394. doi: 10.1021/cg101697r
(12) Chen, X. H.; Hu, J. Q.; Chen, Z.W.; Feng, X. M.; Li, A. Q.Biosens. Bioelectron. 2009, 24, 3448. doi: 10.1016/j.bios.2009.04.037
(13) Chen, Z.W.; He, X. H. J. Alloy. Compd. 2010, 497, 312. doi: 10.1016/j.jallcom.2010.03.053
(14) Patwardhan, J. S.; Rahaman, M. N. J. Mater. Sci. 2004, 39, 133.doi: 10.1023/B:JMSC.0000007737.19267.60
(15) Hou, J. G.; Cao, R.; Jiao, S. Q.; Zhu, H. M.; Kumar, R. V. Appl. Catal. B: Environ. 2011, 104, 399. doi: 10.1016/j.apcatb.2011.02.032
(16) Zhu, X. Q.; Zhang, J. L.; Chen, F. Chemosphere 2010, 78, 1350.doi: 10.1016/j.chemosphere.2010.01.002
(17) Hou, J. G.; Jiao, S. Q.; Zhu, H. M.; Kumar, R. V. J. Solid State Chem. 2011, 184, 154. doi: 10.1016/j.jssc.2010.11.017
(18) Yao,W. F.;Wang, H.; Xu, X. H.; Zhou, J. T.; Yang, X. N.;Zhang, Y.; Shang, S. X. Appl. Catal. A: Gen. 2004, 259, 29. doi: 10.1016/j.apcata.2003.09.004
(19) Zhou, T. F.; Hu, J. C. Environ. Sci. Technol. 2010, 44, 8698. doi: 10.1021/es1019959
(20) Cheng, H. F.; Huang, B. B.; Dai, Y.; Qin, X. Y.; Zhang, X. Y.;Wang, Z. Y.; Jiang, M. H. J. Solid State Chem. 2009, 182, 2274.doi: 10.1016/j.jssc.2009.06.006
(21) Yao,W. F.; Xu, X. H.;Wang, H.; Zhou, J. T.; Yang, X. N.;Zhang, Y.; Shang, S. X.; Huang, B. B. Appl. Catal. B: Environ.2004, 52, 109. doi: 10.1016/j.apcatb.2004.04.002
(22) Wang, Z. Z.; Qi, Y. J.; Qi, H. Y.; Lu, C. J.;Wang, S. M. J. Mater. Sci.: Mater. Electron 2010, 21, 523. doi: 10.1007/s10854-009-9950-z
(23) Liu, D. R.; Jiang, Y. S.; Gao, G. M. Chemosphere 2011, 83,1546. doi: 10.1016/j.chemosphere.2011.01.033
(24) Yu, H. G.; Yu, J. G.; Cheng, B. Chemosphere 2007, 66, 2050.doi: 10.1016/j.chemosphere.2006.09.080
(25) Yu, J. Q.; Zhang, Y.; Kudo, A. J. Solid State Chem. 2009, 182,223. doi: 10.1016/j.jssc.2008.10.021
(26) Zhang, L.; Cao, X. F.; Chen, X. T.; Xue, Z. L. J. Colloid Interface Sci. 2011, 354, 630. doi: 10.1016/j.jcis.2010.11.042
(27) Lin, X.; Lv, P.; Guan, Q. F.; Li, H. B.; Zhai, H. J.; Liu, C. B.Appl. Surf. Sci. 2012, 258, 7146. doi: 10.1016/j.apsusc.2012.04.019
(28) Lin, X.; Guan, Q. F.; Li, H. B.; Li, H. J.; Ba, C. H.; Deng, H. D.Acta Phys. -Chim. Sin. 2012, 28 (6), 1481. [林雪, 关庆丰,李海波, 李洪吉, 巴春华, 邓海德. 物理化学学报, 2012, 28 (6),1481.] doi: 10.3866/PKU.WHXB201203313
(29) Lin, X.; Guan, Q. F.; Li, H. B.; Liu, Y.; Zou, G. T. Sci. China Ser. G 2012, 55, 33. [林雪, 关庆丰, 李海波, 刘洋, 邹广田. 中国科学G, 2012, 55, 33.] doi: 10.1007/s11433-011-4574-8
(30) Lin, X.; Guan, Q. F.; Liu, Y.; Li, H. B. Chin. Phys. B 2010, 19,107701. [林雪, 关庆丰, 刘洋, 李海波. 中国物理B,2010, 19, 107701.] doi: 10.1088/1674-1056/19/10/107701
(31) Lin, X.; Lü, P.; Guan, Q. F.; Li, H. B.; Li, H. J.; Cai, J.; Zou, Y.Acta Phys. -Chim. Sin. 2012, 28 (8), 1978. [林雪, 吕鹏,关庆丰, 李海波, 李洪吉, 蔡杰, 邹阳. 物理化学学报,2012, 28 (8), 1978.] doi: 10.3866/PKU.WHXB201205172
(32) Yu, J. G.; Zhou, M. H.; Cheng, B.; Zhao, X. J. Mol. Catal. A: Chem. 2006, 246, 176. doi: 10.1016/j.molcata.2005.10.034
(33) Pinheiro, A. G.; Pereira, F. M. M.; Santos, M. R. P.; Rocha, H.H. B.; Sombra, A. S. B. J. Mater. Sci. 2007, 42, 2112. doi: 10.1007/s10853-006-1190-5
(34) Ghorai, T. K.; Biswas, S. K.; Pramanik, P. Appl. Surf. Sci. 2008,254, 7498. doi: 10.1016/j.apsusc.2008.06.042
(35) Yao,W. F.;Wang, H.; Xu, X. H.; Zhou, J. T.; Yang, X. N.;Zhang, Y.; Shang, S. X.;Wang, M. Chem. Phys. Lett. 2003, 377,501. doi: 10.1016/S0009-2614(03)01209-0
(36) Cao, Y.; Zhang, X.; Yang,W.; Du, H.; Bai, Y.; Li, T.; Yao, J.Chem. Mater. 2000, 12, 3445. doi: 10.1021/cm0004432

[1] LIU Jin, MAI Jiang-Quan, LI Shi, REN Zhao-Hui, LI Ming, WU Meng-Jiao, WU Yong-Jun, LU Xin-Hui, LI Xiang, TIAN He, WANG Zong-Rong, HAN Gao-Rong. Perovskite Ferroelectric Nanoplates Induced a Highly Oriented Growth of P(VDF-TrFE) Films[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1261-1266.
[2] SCHLERETH, Andrew NOOMUNA Panae, GAO Pei. Mesoscale Protein Patterning on a Self-Assembled Monolayer Coated Silicon Surface through Nanosphere Lithography[J]. Acta Phys. Chim. Sin., 2017, 33(4): 810-815.
[3] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.
[4] XU Han, TONG Ye-Xiang, LI Gao-Ren. Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2171-2184.
[5] TONG La-Ga, LIU Jin-Yan, WANG Cen-Chen, RONG Hua, LI Wei. Preparation of Micro/Nano ZnO Pompons and Their Catalytic Activity for the Solar Degradation of Organic Dyes[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1615-1620.
[6] ZHANG Dong-Feng, ZHANG Yan, ZHANG Hua, QI Juan-Juan, SHANG Yang, GUO Lin. Cavity-Tunable Cu2O Spherical Nanostructures and Their NO2 Gas Sensing Properties[J]. Acta Phys. Chim. Sin., 2015, 31(10): 2005-2010.
[7] WANG Chang-Shun, KAN Cai-Xia, NI Yuan, XU Hai-Ying. Facile Preparation and Growth Mechanism of New-Type Gold Nanoplates[J]. Acta Phys. Chim. Sin., 2014, 30(1): 194-204.
[8] XING Wei-Nan, NI Liang, YAN Xue-Sheng, LIU Xin-Lin, LUO Ying-Ying, LU Zi-Yang, YAN Yong-Sheng, HUO Peng-Wei. Preparation of C@CdS/Halloysite Nanotube Composite Photocatalyst Using One-Step Pyrolytic Method and Its Photodegradation Properties[J]. Acta Phys. Chim. Sin., 2014, 30(1): 141-149.
[9] MA Guo-Fu, MU Jing-Jing, ZHANG Zhi-Guo, SUN Kan-Jun, PENG Hui, LEI Zi-Qiang. Preparation of Polypyrrole/Sodium Alginate Nanospheres and Their Application for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2013, 29(11): 2385-2391.
[10] LIN Xue, YU Li-Li, Yan Li-Na, GUAN Qing-Feng, Yan Yong-Sheng, ZHAO Han. Controllable Synthesis and Photocatalytic Activity of Spherical, Flowerlike and Threadlike Bismuth Vanadates[J]. Acta Phys. Chim. Sin., 2013, 29(08): 1771-1777.
[11] YANG Han-Pei, ZHANG Ying-Chao, FU Xiao-Fei, SONG Shuang-Shuang, WU Jun-Ming. Surface Modification of CNTs and Improved Photocatalytic Activity of TiO2-CNTs Heterojunction[J]. Acta Phys. Chim. Sin., 2013, 29(06): 1327-1335.
[12] HUANG Hai-Feng, JIA Jian-Ming, LU Han-Feng, ZHANG Hong-Hua, PAN Lie-Qun. Effect of Designed Zr/Ti Molar Ratio on the Photocatalytic Activity of Sr-Zr-Ti Mixed Oxide Catalysts under Visible Light[J]. Acta Phys. Chim. Sin., 2013, 29(06): 1319-1326.
[13] ZHU Yan-Yan, LIU Yan-Fang, LÜ Yan-Hui, WANG Hua, LING Qiang, ZHU Yong-Fa. Reflux Preparation and Photocatalytic Performance of Bismuth Phosphate Nanorods[J]. Acta Phys. Chim. Sin., 2013, 29(03): 576-584.
[14] CHEN Fu-Xiao, FAN Wei-Qiang, ZHOU Teng-Yun, HUANG Wei-Hong. Core-Shell Nanospheres (HP-Fe2O3@TiO2) with Hierarchical Porous Structures and Photocatalytic Properties[J]. Acta Phys. Chim. Sin., 2013, 29(01): 167-175.
[15] MO Bo, KAN Cai-Xia, KE Shan-Lin, CONG Bo, XU Li-Hong. Research Progress in Silver Nanoplates[J]. Acta Phys. Chim. Sin., 2012, 28(11): 2511-2524.