Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (02): 298-304    DOI: 10.3866/PKU.WHXB201211213
ELECTROCHEMISTRY AND NEW ENERGY     
Synthesis and Electrochemical Capacitive Performances of Novel Hierarchically Micro-Meso-Structured Porous Carbons Fabricated Using Microporous Rod-Like Hydroxyapatites as a Template
HONG Xiao-Ting1, WU Xiao-Hui1, MO Ming-Yue1, LUO Zhi-Ping2, HUI Kwan San3, CHEN Hong-Yu1, LI Lai-sheng1, HUI Kwun Nam4, ZHANG Qiu-Yun1
1 School of Chemistry and Environment, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, P. R. China;
2 Department of Chemistry and Physics, Fayetteville State University, Fayetteville, NC 28301, USA;
3 Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong, P. R. China;
4 Department of Materials Science and Engineering, Pusan National University, Republic of Korea
Download:   PDF(1972KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Electrochemical capacitors (ECs) are attractive energy storage systems for applications with high power requirements. Porous carbons are the materials that are most frequently used for the electrodes in ECs, because of their large surface area, high conductivity, chemical inertness, low cost, and tunable pore structure. Here, novel hierarchically micro-meso-structured porous carbons were synthesized, using microporous rod-like hydroxyapatite nanoparticles as a template and sucrose as a carbon source. The morphology and surface properties of the as-prepared porous carbons were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller surface analysis. The electrochemical capacitive performances were evaluated in an aqueous solution of 1 mol·L-1 H2SO4 using cyclic voltammetry, electrochemical impedance spectroscopy, and constant current charge/discharge tests. The resultant carbons showed a high surface area of more than 719.7 m2·g-1, large pore volumes of more than 1.32 cm3·g-1, and a disordered pore structure composed of randomly distributed micropores, collapsed mesopores, and interweaving rod-like mesopores that took the shape of the template. As the carbonization temperature was increased, the density of micropores and rod-like mesopores decreased, and a tri-modal pore size distribution appeared for the carbon sample carbonized at 900 ° C. Because of these unique characteristics, the electrode material originated from the porous carbon carbonized at 900℃ exhibited good electrochemical capacitive performances.



Key wordsRod-like mesopore      Micro-meso porous carbon      Hydroxyapatite      Electrochemical capacitive performance      Template     
Received: 25 September 2012      Published: 21 November 2012
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (21203067), Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (LYM11052), and ITS/244/11 of Innovation and Technology Fund, HKSAR, China.

Cite this article:

HONG Xiao-Ting, WU Xiao-Hui, MO Ming-Yue, LUO Zhi-Ping, HUI Kwan San, CHEN Hong-Yu, LI Lai-sheng, HUI Kwun Nam, ZHANG Qiu-Yun. Synthesis and Electrochemical Capacitive Performances of Novel Hierarchically Micro-Meso-Structured Porous Carbons Fabricated Using Microporous Rod-Like Hydroxyapatites as a Template. Acta Phys. Chim. Sin., 2013, 29(02): 298-304.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201211213     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I02/298

(1) Shen, B. S.; Feng,W. J.; Lang, J.W.;Wang, R. T.; Tai, Z. X.;Yan, X. B. Acta Phys. -Chim. Sin. 2012, 28, 1726. [申保收,冯旺军, 郎俊伟, 王儒涛, 邰志新, 阎兴斌. 物理化学学报,2012, 28, 1726.] doi: 10.3866/PKU.WHXB201204261
(2) Ghosh, A.; Lee, Y. H. ChemSusChem 2012, 5, 480. doi: 10.1002/cssc.v5.3
(3) Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520. doi: 10.1039/b813846j
(4) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157,11. doi: 10.1016/j.jpowsour.2006.02.065
(5) Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297
(6) Guo, P. Z.; Ji, Q. Q.; Zhang, L. L.; Zhao, S. Y.; Zhao, X. S. Acta Phys. -Chim. Sin. 2011, 27, 2836. [郭培志, 季倩倩, 张丽莉,赵善玉, 赵修松. 物理化学学报, 2011, 27, 2836.] doi: 10.3866/PKU.WHXB20112836
(7) Li,W.; Zhou, J.; Xing,W.; Zhuo, S. P.; Lü, Y. M. Acta Phys. -Chim. Sin. 2011, 27, 620. [李文, 周晋, 邢伟,禚淑萍, 吕忆民. 物理化学学报, 2011, 27, 620.] doi: 10.3866/PKU.WHXB20110331
(8) Liu, Y. L.; Li, L. X.; Chen, X. H.; Song, H. H. Acta Phys. -Chim. Sin. 2007, 23, 1399. [刘宇林, 李丽霞, 陈晓红,宋怀河. 物理化学学报, 2007, 23, 1399.] doi: 10.3866/PKU.WHXB20070917
(9) Schüth, F. Angew. Chem. Int. Edit. 2003, 42, 3604.
(10) Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986,352, 3. doi: 10.1016/S0021-9673(01)83368-9
(11) Wu, X.; Hong, X. T.; Nan, J.; Luo, Z.; Zhang, Q.; Li, L.; Chen,H.; Hui, K. S. Microporous Mesoporous Mat. 2012, 160, 25.doi: 10.1016/j.micromeso.2012.04.013
(12) Wang, H. C.; Li, B. L.; Li, J. T.; Lin, P.; Bian, X. B.; Li, J.;Zhang, B.;Wan, Z. X. Appl. Surf. Sci. 2011, 257, 4325. doi: 10.1016/j.apsusc.2010.12.051
(13) Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc.2008, 130, 5390. doi: 10.1021/ja7106146
(14) Liu, B.; Shioyama, H.; Jiang, H.; Zhang, X.; Xu, Q. Carbon2010, 48, 456. doi: 10.1016/j.carbon.2009.09.061
(15) Morishita, T.; Soneda, Y.; Tsumura, T.; Inagaki, M. Carbon2006, 44, 2360. doi: 10.1016/j.carbon.2006.04.030
(16) Morishita, T.; Ishihara, K.; Kato, M.; Inagaki, M. Carbon 2007,45, 209. doi: 10.1016/j.carbon.2006.09.032
(17) Xu, B.; Peng, L.;Wang, G. Q.; Cao, G. P.;Wu, F. Carbon 2010,48, 2377. doi: 10.1016/j.carbon.2010.03.003
(18) Zhao, C.;Wang,W.; Yu, Z.; Zhang, H.;Wang, A.; Yang, Y.J. Mater. Chem. 2010, 20, 976. doi: 10.1039/b911913b
(19) Zhang,W.; Huang, Z. H.; Cao, G.; Kang, F.; Yang, Y. J. Power Sources 2012, 204, 230. doi: 10.1016/j.jpowsour.2011.12.054
(20) Xia, K.; Gao, Q.; Jiang, J.; Hu, J. Carbon 2008, 46, 1718. doi: 10.1016/j.carbon.2008.07.018
(21) Li, L. Y.; Song,W. H.; Chen, T. H. Acta Phys. -Chim. Sin. 2009,25, 2404. [李丽颖, 宋文华, 陈铁红. 物理化学学报, 2009,25, 2404.] doi: 10.3866/PKU.WHXB20091020
(22) Buckley, J. J.; Lee, A. F.; Olivi, L.;Wilson, K. J. Mater. Chem.2010, 20, 8056. doi: 10.1039/c0jm01500h
(23) Lee, S. Y.; Park, S. J. J. Solid State Chem. 2011, 184, 2655. doi: 10.1016/j.jssc.2011.07.034
(24) Sing, K. S.W.; Everett, D. H.; Haul, R. A.; Moscou,W. L.;Pierotti, R. A. Pure Appl. Chem. 1985, 57, 603. doi: 10.1351/pac198557040603
(25) Hong, X. T.;Wu, X.; Zhang, Q.; Xiao, M.; Yang, G.; Qiu, M.;Han, G. Appl. Surf. Sci. 2012, 258, 4801. doi: 10.1016/j.apsusc.2012.01.102
(26) Kruk, M.; Kohlhaas, K. M.; Dufour, B.; Celer, E. B.; Jaroniec,M.;Matyjaszewski,K.; Ruoff, R. S.;Kowalewski, T.Microporous Mesoporous Mat. 2007, 102, 178. doi: 10.1016/j.micromeso.2006.12.027
(27) Zhao, C. R.;Wang,W. K.; Yu, Z. B.; Zhang, H.;Wang, A. B.;Yang, Y. S. J. Mater. Chem. 2010, 20, 976. doi: 10.1039/b911913b
(28) Wang, D.W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Edit. 2007, 47, 373.
(29) Wang, D.W.; Li, F.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M.Chem. Mater. 2008, 20, 7195. doi: 10.1021/cm801729y
(30) Kim, H.; Popov, B. N. Journal of the Electrochemical Society2003, 150, A1153.
(31) Arulepp, M.; Permann, L.; Leis, J.; Perkson, A.; Rumma, K.;Jänes, A.; Lust, E. J. Power Sources 2004, 133, 320. doi: 10.1016/j.jpowsour.2004.03.026

[1] FAN Qi-Tang, ZHU Jun-Fa. Controlling the Topology of Low-Dimensional Organic Nanostructures with Surface Templates[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1288-1296.
[2] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1462-1473.
[3] XIONG Wen-Hui, ZHANG Wen-Chao, YU Chun-Pei, SHEN Rui-Qi, CHENG Jia, YE Jia-Hai, QIN Zhi-Chun. Preparation of Nanoporous CoFe2O4 and Its Catalytic Performance during the Thermal Decomposition of Ammonium Perchlorate[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2093-2100.
[4] GUO Xing-Zhong, DING Li, YU Huan, SHAN Jia-Qi, YANG Hui. Construction and Preparation Mechanism of Hierarchically Porous SiO2 Monoliths[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1727-1733.
[5] ZHAO Shu-Heng, LANG Lin, JIANG Jun-Fei, YIN Xiu-Li, WU Chuang-Zhi. Synthesis and Low-Temperature Detemplation of High-Silica MFI Zeolite Membranes[J]. Acta Phys. Chim. Sin., 2016, 32(2): 519-526.
[6] LIU Dan, HU Yan-Yan, ZENG Chao, QU De-Yu. Soft-Templated Ordered Mesoporous Carbon Materials: Synthesis, Structural Modification and Functionalization[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2826-2840.
[7] FENG Lei, HAO Jing-Cheng. Preparation and Property of Gold Nanoparticles from Muliple Self- Assembled Structures as Templates in LA/C14DMAO/H2O System[J]. Acta Phys. Chim. Sin., 2016, 32(1): 380-390.
[8] ZHAO Shu-Heng, LANG Lin, YIN Xiu-Li, YANG Wen-Shen, WU Chuang-Zhi. TPAOH Template Removal from High-Silica ZSM-5 by Low-Temperature Hydrocracking[J]. Acta Phys. Chim. Sin., 2015, 31(4): 793-799.
[9] CHEN Li, XUE Teng, ZHU Shu-Yan, WANG Yi-Meng. One-Step Synthesis of Hierarchical ZSM-5 Zeolite Microspheres Using Alkyl-Polyamines as Single Templates[J]. Acta Phys. Chim. Sin., 2015, 31(1): 181-188.
[10] XU Jing, QIANG Jin-Feng, WANG Rui-Juan, NIU Wen-Jun, SHEN Ming. Controllable Preparation of Rambutan-Shape AlOOH/Al2O3 Nanomaterials with a Composite Soft Template[J]. Acta Phys. Chim. Sin., 2013, 29(10): 2286-2294.
[11] CAI Hong-Min, REN Su-Zhen, WANG Meng, JIA Cui-Ying. Preparation and Properties of Monodisperse SnO2 Hollow Micro/Nano Spheres[J]. Acta Phys. Chim. Sin., 2013, 29(04): 881-888.
[12] HONG Zhou-Qin, LI Jin-Xia, ZHANG Fang, ZHOU Li-Hui. Synthesis of Magnetically Graphitic Mesoporous Carbon from Hard Templates and Its Application in the Adsorption Treatment of Traditional Chinese Medicine Wastewater[J]. Acta Phys. Chim. Sin., 2013, 29(03): 590-596.
[13] WANG Guan-Yao, YAN Wei-Wei, ZHANG Xiao-Hong, RUAN Wen-Juan, ZHU Zhi-Ang. Synthesis and Spectral Properties of Salen-Porphyrin Type Homo- and Hetero-Binuclear Complexes with π-Conjugate Configuration[J]. Acta Phys. Chim. Sin., 2012, 28(12): 2774-2782.
[14] GAO Ji-Ning, ZHAO Hua-Bo, QI Li-Min. Synthesis of Silver Sulfide Hollow Sphere-Silver Nanoparticle Heterostructures Based on Reactive Templates[J]. Acta Phys. Chim. Sin., 2012, 28(10): 2487-2492.
[15] JI Ping-Li, WANG Jin-Gang, ZHU Xiao-Li, KONG Xiang-Zheng. Preparation of Silver Doped TiO2 Hollow Nanoparticles and Characterization of Their Structures and Photocatalytic Properties[J]. Acta Phys. Chim. Sin., 2012, 28(09): 2155-2161.