Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (02): 351-357    DOI: 10.3866/PKU.WHXB201211214
Dynamic Surface Adsorption Properties of Sodium Dodecyl Sulfate Aqueous Solution
FAN Hai-Ming, ZHANG Yi-Nuo, ZHANG Jin, WANG Dong-Ying, GAO Jian-Bo, KANG Wan-Li, MENG Xiang-Can, ZHAO Jian, XU Hai
College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong Province, P. R. China
Download:   PDF(761KB) Export: BibTeX | EndNote (RIS)      


The dynamic surface adsorption properties of aqueous sodium dodecyl sulfate (SDS) solutions were investigated at different concentrations of NaCl using bubble pressure tensiometry MPTC. In the case of ionic surfactants, the existence of a diffuse electric double layer on the surface adsorption layer and around the micelle produces a surface charge. Here, we discuss the influence of the surface charge on the dynamic surface diffusion processes and the micelle properties. It was found that the SDS adsorption process occurred in the presence of a 5.5 kJ·mol-1 adsorption barrier (Ea) that was generated by the surface charge; this barrier significantly decreased the effective diffusion coefficient (Deff) of the dodecyl sulfate ions (DS-). The ratio of the effective diffusion coefficient to the monomer self-diffusion coefficient (D) (Deff/D) was only 0.013. This indicated that at the beginning, the adsorption of SDS followed the mixed kinetic-diffusion controlled model; this is different from the behavior observed for nonionic surfactants. The adsorption barrier was reduced when NaCl was added. Ea was less than 0.3 kJ·mol-1 after the addition of 80 mmol·L-1 of NaCl. This resulted in values of between 0.8 and 1.2 for Deff/D, which was consistent with the diffusion-controlled model that describes the behavior of nonionic surfactants. The characteristic constants for the micelle dissociation rate (k2) were determined from the dynamic surface tension of the SDS micelle solutions. The calculated k values decreased as the NaCl concentration was increased, which demonstrated the existence of surface charge on the SDS micelles; this surface charge increased the repulsive forces between the dodecyl sulfate ions, and promoted the dispersion of the micelles.

Key wordsSodium dodecyl sulfate      Dynamic surface tension      Surface charge      Adsorption barrier      Micelle dissociation     
Received: 25 September 2012      Published: 21 November 2012
MSC2000:  O647  

The project was supported by the Taishan Scholars Construction Engineering of Shandong Province (ts20070704), National Natural Science Foundation of China (51234007, 51104169), Natural Science Foundation of Shandong Province, China (ZR2010BQ003, ZR2010EZ006), and National Undergraduate Innovative and Entrepreneurship Training Program of China University of Petroleum (East China), China (201210425011).

Cite this article:

FAN Hai-Ming, ZHANG Yi-Nuo, ZHANG Jin, WANG Dong-Ying, GAO Jian-Bo, KANG Wan-Li, MENG Xiang-Can, ZHAO Jian, XU Hai. Dynamic Surface Adsorption Properties of Sodium Dodecyl Sulfate Aqueous Solution. Acta Phys. -Chim. Sin., 2013, 29(02): 351-357.

URL:     OR

(1) Rosen, M. J. Surfactant and Interfacial Phenomena; JohnWileyand Sons: New York, 1989.
(2) Aveyard, R.; Haydon, D. A. An Introduction to the Principles of Surface Chemistry; Cambridge Univ. Press: London, 1973.
(3) Myers, D. In Surfactant Science Series; Reiger, M. M., Rhein,L. D. Eds.; Marcal Dekker: New York, 1997; Vol. 68, pp 29-82.
(4) Zhao, F. L. Principles of Enhanced Oil Recovery; ChinaUniversity of Petroleum Press: Dongying, 2006; pp 1-2.[赵福麟. EOR原理. 东营: 石油大学出版社, 2006:1-2.]
(5) McClements, D. J. Food Emulsions: Principles, Practice and Technology; CRC Press: Boca Raton, Florida, 2005.
(6) Fan, H. M.; Han, F.; Liu, Z.; Qin, L.; Li, Z. C.; Liang, D. H.;Ke, F. Y.; Huang, J. B.; Fu, H. L. J. Colloid Interface Sci. 2008,321, 227.
(7) Han, X.; Cheng, X. H.;Wang, J.; Huang, J. B. Acta Phys. -Chim. Sin. 2012, 28, 146. [韩霞, 程新皓, 王江,黄建滨. 物理化学学报, 2012, 28, 146.] doi: 10.3866/PKU.WHXB201228146
(8) Valentini, J. E.; Thomas,W. R.; Sevenhuysen, P.; Jiang, T. S.;Lee, H. O.; Yi, L.; Yen, S. C. Ind. Eng. Chem. Res. 1991, 30,453. doi: 10.1021/ie00051a004
(9) Knoche, M.; Tamura, H.; Bukovac, M. J. J. Agric. Food Chem.1991, 39, 202. doi: 10.1021/jf00001a041
(10) Tang, X. L.; Dong, J. F.; Li, X. F. J. Colloid Interface Sci. 2008,325, 223. doi: 10.1016/j.jcis.2008.05.055
(11) Zhang, L.; Luo, L.; Zhao, S.; Xu, Z. C.; An, J. Y.; Yu, J. Y.J. Petro. Sci. Eng. 2004, 41, 189. doi: 10.1016/S0920-4105(03)00153-0
(12) Zhao, Z. K.; Li, Z. S.; Zhao, S.; Qiao,W. H.; Cheng, L. B.Colloids Surf. A: Physicochem. Eng. Aspects 2005, 259, 71.doi: 10.1016/j.colsurfa.2005.02.012
(13) Marinova, K. G.; Basheva, E. S.; Nenova, B.; Temelska, M.;Mirarefi, A.Y. Food Hydrocolloids 2009, 23, 1864. doi: 10.1016/j.foodhyd.2009.03.003
(14) Chang, C. H.; Franses, E. I. Colloids Surf. A: Physicochem. Eng. Aspects 1995, 100, 1. doi: 10.1016/0927-7757(94)03061-4
(15) Eastoe, J.; Dalton, J. S.; Rogueda, P. G. A.; Crooks, E. R.; Pitt,A. R.; Simister, E. A. J. Colloid Interface Sci. 1997, 188, 423.doi: 10.1006/jcis.1997.4778
(16) Ferrari, M.; Liggerieri, L.; Ravera, F. J. Phys. Chem. B 1998,102, 10521. doi: 10.1021/jp9827429
(17) Liggieri, L.; Ferrari, M.; Massa, A.; Francesca, F.; Ravera, F.Colloids Surf. A: Physicochem. Eng. Aspects 1999, 156, 455.doi: 10.1016/S0927-7757(99)00103-X
(18) Eastoe, J.; Dalton, J. S. Adv. Colloid Interface Sci. 2000, 85,103. doi: 10.1016/S0001-8686(99)00017-2
(19) Chatterjee, A.; Moulik, S. P.; Sanyal, S. K.; Mishra, B. K.; Puri,P. M. J. Phys. Chem. B 2001, 105, 12823. doi: 10.1021/jp0123029
(20) Ward, A. F. H.; Tordai, L. J. J. Chem. Phys. 1946, 14, 453. doi: 10.1063/1.1724167
(21) Zhao, G. X.; Zhu, B. Y. Principles of Surfactant Action; Chinalight Industry Press: Beijing, 2003, pp 119-122. [赵国玺,朱瑶. 表面活性剂作用原理. 北京: 中国轻工业出版社,2003: 119-122.]
(22) Kamenka, N.; Lindman, B.; Brun, B. Colloid Polym. Sci. 1974,252, 144. doi: 10.1007/BF01555539
(23) Ravera, F.; Liggieri, L.; Steinchen, A. J. Colloid Interface Sci.1993, 156, 109 doi: 10.1006/jcis.1993.1088
(24) Liggieri, L.; Ravera, F.; Passerone, A. Colloids Surf. A: Physicochem. Eng. Aspects 1996, 114, 351. doi: 10.1016/0927-7757(96)03650-3
(25) Noskov, B.A. Adv. Colloid Interface Sci. 2002, 95, 237. doi: 10.1016/S0001-8686(00)00085-3
(26) Joos, P.; Rillaerts, E. J. Phys. Chem. 1982, 86, 3471. doi: 10.1021/j100214a040
(27) Makievski, A. V.; Fainerman, V. B.; Joos, P. J. Colloid Interface Sci. 1994, 166, 6. doi: 10.1006/jcis.1994.1264
(28) Aniannson, E.;Wall, S. N.; Almgren, M.; Hoffmann, H.;Kielmann, I.; Ulbricht,W.; Zana, R.; Lang, J.; Tondre, C.J. Phys. Chem. 1976, 80, 905. doi: 10.1021/j100550a001
(29) Tondre, C.; Zana, R. J. Colloid Interface Sci. 1978, 66, 544. doi: 10.1016/0021-9797(78)90074-7
(30) Ulbricht,W.; Zana, R. Colloids Surf. A: Physicochem. Eng. Aspects 2001, 183 -185, 487.

[1] GE Song, CHEN Min. Effects of Surface Charge and Electric Field on the Interfacial Thermal Resistance at Liquid/Solid Interfaces[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2939-2943.
[2] LIU Yan;GUO Xia;GUO Rong. Interaction between N, N-diethylaniline and SDS/n-C5H11OH/H2O Microemulsion[J]. Acta Phys. -Chim. Sin., 2005, 21(01): 38-41.
[3] Bi Zhi-Chu;Liao Wen-Sheng;Qi Li-Yun. Characteristics of Ethanediyl-α,β-bis(cetyldimethylammonium bromide) Dilute Aqueous Solution[J]. Acta Phys. -Chim. Sin., 2003, 19(11): 1015-1019.
[4] Yu Ming;Zhang Yu-Ting. Covering of Y(OH)CO3 on AgI and Preparation of Hollow Particles of Y(OH)CO3[J]. Acta Phys. -Chim. Sin., 2002, 18(11): 1005-1008.
[5] Guo Xia;Xu Hui;Guo Rong. The Fluorescence Quenching of Anthracene by Phenothiazine in Sodium Dodecyl Sulfate / Benzyl Alcohol / Water Microemulsion[J]. Acta Phys. -Chim. Sin., 2002, 18(06): 500-503.
[6] Fang Yun;Liu Xue-Feng;Xia Yong-Mei;Yang Yang;Cai Kun;Suh Jung-Mok;Cho Heon-Young. Determination of Critical Micellar Aggregation Numbers by Steadystate Fluorescence Probe Method[J]. Acta Phys. -Chim. Sin., 2001, 17(09): 828-831.
[7] Hai Ming-Tan;Han Bu-Xing;Yan Hai-Ke. Investigation on the Interaction of Sodium Dodecyl Sulfate with Poly(Ethylene Oxide) by Electron Spin Resonance and UV Spectrum[J]. Acta Phys. -Chim. Sin., 2001, 17(04): 338-342.
[8] Zhang Xiao-Hong, Fan Yu, Wu Shi-Kang. Effect of Sodium Dodecyl Sulfate on the Behavior of PEO-PPO-PEO Triblock Copolymer in Aqueous Solution[J]. Acta Phys. -Chim. Sin., 1999, 15(05): 390-397.
[9] Hai Ming-Tan, Gao Jie, Han Bu-Xing, Yan Hai-Ke, Liu Yun, Han Qi-Yong. Vapour Pressure and Surface Tension of Aqueous Solution SDS-PEO[J]. Acta Phys. -Chim. Sin., 1998, 14(08): 747-751.
[10] Wu Jiong-Ru; Tian Yong-Chi; Liang Ying-Qiu. Phase Transition of Sodium Dodecyl Sulfate-Water System: Probing by Pyrene Fluorescence[J]. Acta Phys. -Chim. Sin., 1991, 7(03): 329-332.