Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (02): 263-270    DOI: 10.3866/PKU.WHXB201211231
Dissociative Adsorption of Methanethiol on Cu(111) Surface: a Density Functional Theory Study
FAN Xiao-Li, LIU Yan, DU Xiu-Juan, LIU Chong, ZHANG Chao
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, P. R. China
Download:   PDF(1335KB) Export: BibTeX | EndNote (RIS)      


The interaction of methanethiol (CH3SH) molecules with the Cu(111) surface was investigated using a first-principles method based on density functional theory, and a slab model. A series of possible adsorption configurations constructed using S atoms on different sites with different tilt angles were studied. It was found for the first time that the non-dissociative molecular adsorption of CH3SH on the Cu(111) surface with the S atom sitting on the top site belongs to the weak chemisorption, and the adsorption energy is 0.39 eV. After the dissociation of the S―H bond, the S atom is located at the bridge site, with a small shift toward the hollow site. The dissociative adsorption structure is thermodynamically more stable than the intact one, and the adsorption energy is 0.75-0.77 eV. Two reaction pathways have been studied for the transition from non-dissociative adsorption to dissociative adsorption, and the activation energy barrier along the minimum energy path is 0.57 eV. The results of the calculations indicated that the released H atom prefers to form a bond with the copper surface, rather than desorbing in the H2 molecular form. Comparing the local density of states of S atoms in the single CH3SH, CH3SH/Cu(111), and CH3S/Cu(111) structures, we found that the bonding between the S atoms and the substrate is much stronger in the dissociated adsorption states.

Key wordsMethanethiol molecule      Cu(111) surface      Density functional theory      Adsorption geometry      Dissociation      Local density of states     
Received: 13 August 2012      Published: 23 November 2012
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (20903075, 21273172), Programof Introducing Talents of Discipline to Universities, China (111 Project) (B08040), and Northwestern Polytechnical University Foundation for Fundamental Research, China (JC20100226).

Cite this article:

FAN Xiao-Li, LIU Yan, DU Xiu-Juan, LIU Chong, ZHANG Chao. Dissociative Adsorption of Methanethiol on Cu(111) Surface: a Density Functional Theory Study. Acta Phys. Chim. Sin., 2013, 29(02): 263-270.

URL:     OR

(1) Ulman, A. Chem. Rev. 1996, 96, 1533. doi: 10.1021/cr9502357
(2) Rzeznicka, I.; Lee, J.; Maksymovych, P.; Yates, J. T. J. Phys. Chem. B 2005, 109, 15992. doi: 10.1021/jp058124r
(3) Fan, X. L.; Liu, Y.; Liu, C.; Liu, H. M. Acta Phys. -Chim. Sin.2012, 28, 1107. [范晓丽, 刘燕, 刘崇, 刘焕明. 物理化学学报, 2012, 28, 1107.] doi: 10.3866/PKU.WHXB201203011
(4) Floriano, P. N.; Schlieben, O.; Doomes, E. E.; Klein, I.; Janssen,J.; Hormes, J.; Poliakoff, E. D.; McCarley, R. L. Chem. Phys. Lett. 2000, 321, 175. doi: 10.1016/S0009-2614(00)00311-0
(5) Toomes, R. L.; Polcik, M.; Kittel, M.; Hoeft, J. T.; Sayago, D. I.;Pascal, M.; Lamont, J. Robinson, C. L. A.;Woodruff, D. P. Surf. Sci. 2002, 513, 437. doi: 10.1016/S0039-6028(02)01736-3
(6) Zhou, J. G; Hagelberg, F. Phys. Rev. Lett. 2006, 97, 045505. doi: 10.1103/PhysRevLett.97.045505
(7) Nara, J.; Higai, S.; Morikawa, Y.; Ohno, T. Chem. Phys. 2004,120, 6705.
(8) Lee, J. G.; Yates, J. T. J. Phys. Chem. B 2003, 107, 10540. doi: 10.1021/jp0302515
(9) Lai, Y. H.; Yeh, C. T.; Cheng, S. H.; Liao, P.; Hung,W. H.J. Phys. Chem. B 2002, 106, 5438. doi: 10.1021/jp0146869
(10) Driver, S. M.; King, D. A. Surf. Sci. 2007, 601, 510. doi: 10.1016/j.susc.2006.10.013
(11) Imanishi, A.; Isawa, K.; Matsui, F.; Tsuduki, T.; Yokoyama, T.;Kondoh, H.; Kitajima, Y.; Ohta, T. Surf. Sci. 1998, 407, 282.doi: 10.1016/S0039-6028(98)00217-9
(12) Jackson, G. J.;Woodruff, D. P.; Jones, R. G.; Singh, N. K.;Chan, A. S. Y.; Cowie, B. C. C.; Formoso, V. Phys. Rev. Lett.2000, 84, 119. doi: 10.1103/PhysRevLett.84.119
(13) D'Agostino, S.; Chiodo, L.; Sala, F. D.; Cingolani, R.; Rinaldi,R. Phys. Rev. B 2007, 75, 195444. doi: 10.1103/PhysRevB.75.195444
(14) Kariapper, M. S.; Grom, G. F.; Jackson, G. J.; McConville, C.F.;Woodruff, D. P. J. Phys. Condes. Matter 1998, 10, 8661. doi: 10.1088/0953-8984/10/39/005
(15) Zhou, J. G.;Williams, Q. L.; Hagelberg, F. Phys. Rev. B 2008,77, 035402. doi: 10.1103/PhysRevB.77.035402
(16) Syed, J. A.; Sardar, S. A.; Yagi, S.; Tanaka, K. Thin Solid Films2006, 515, 2130. doi: 10.1016/j.tsf.2006.08.004
(17) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
(18) Hohenberg, P.; Kohn,W. Phys. Rev. B 1964, 136, B864.
(19) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
(20) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,77, 3865. doi: 10.1103/PhysRevLett.77.3865
(21) Monkhorst, H.; Pack, J. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
(22) Jónsson, H. Annu . Rev. Phys. Chem. 2000, 51, 623. doi: 10.1146/annurev.physchem.51.1.623
(23) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. Chem. Phys. 2000,113, 9901.
(24) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. doi: 10.1103/PhysRevB.41.7892
(25) Huang, Y. L.; Liu, Z. P. Acta Phys. -Chim. Sin. 2008, 24, 1662.[黄永丽, 刘志平. 物理化学学报, 2008, 24, 1662.] doi: 10.3866/PKU.WHXB20080923
(26) Favot, F.; Corso, A. D.; Baldereschi, A. Chem. Phys. 2001, 114,483.
(27) Min, J. X.; Fan, X. L.; Cheng, Q. Z.; Chi, Q. Acta Chim. Sin.2011, 69, 789. [闵家祥, 范晓丽, 程千忠, 池琼. 化学学报,2011, 69, 789.]
(28) Cometto, F. P.; Olivera, P. P.; Macagno, V. A.; Patrito, E. M.J. Phys. Chem. B 2005, 109, 21737. doi: 10.1021/jp053273v
(29) Xia,W. S.;Wang, H. Y.;Wang, H. L.; Zhang, Q. E. Chem. J. Chin. Univ. 1998, 19, 438. [夏文生, 汪海有, 万惠霖, 张乾二.高等学校化学学报, 1998, 19, 438.]
(30) Lustemberg, P. G.; Martiarena, M. L.; Martinez, A. E.;Busnengo, H. F. Langmuir 2008, 24, 3274. doi: 10.1021/la703306t

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[6] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[7] ZOU Jing-Xiang, SHEN Jun, XU En-Hua, FANG Tao, LI Shu-Hua. Multireference Perturbation Theory and Multireference Coupled Cluster Theory Based on the “Block-Correlation” Framework[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1277-1287.
[8] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[9] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[10] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[11] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.
[12] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[13] LIU Ning-Liang, SHEN Huan. Multiphoton Dissociation and Ionization Dynamics of Allyl Chloride Using Femtosecond Laser Pulses[J]. Acta Phys. Chim. Sin., 2017, 33(3): 500-505.
[14] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. Chim. Sin., 2017, 33(3): 530-538.
[15] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Phys. Chim. Sin., 2017, 33(3): 548-553.