Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (02): 287-292    DOI: 10.3866/PKU.WHXB201211261
Nano-WO3 Modified Carbon Nanotube Supported Pt and Their Electrocatalytic Activity for Methanol Electro-Oxidation
ZHOU Yang1,2, CHU You-Qun1, LIU Wei-Ming1, MA Chun-An1
1 State Key Laboratory Breeding Base for Green Chemistry Synthesis Technology, International Science&Technology Cooperation Base of Energy Materials and Application, College Of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, P. R. China;
2 Jiangxi University of Science and Technology, Metallurgical and Chemical Engineering Institute. Ganzhou 341000, Jiangxi Province, P. R. China
Download:   PDF(2590KB) Export: BibTeX | EndNote (RIS)      


Nano-WO3-modified carbon nanotube supported Pt nanoparticles (Pt-WO3/CNT) with uniform dimensions were prepared by adsorption and decomposition of ammonium meta-tungstate (AMT) on the surface of CNTs pretreated with HNO3, and H2PtCl6 as the Pt precursor. The samples were characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The Pt nanoparticles had a face-centered cubic crystal structure, and were well dispersed on the external walls and ports of the WO3/ CNTs. The electrocatalytic activity of the samples towards the oxidation of methanol was investigated using cyclic voltammetry and chronoamperometry. The results indicated that the Pt-WO3/CNT catalysts exhibited higher electrocatalytic activity, better anti-poisoning ability, and good stability during methanol oxidation compared with Pt/CNTs used for acid oxidation treatments.

Key wordsDirect methanol fuel cell      Carbon nanotube      Tungsten trioxide      Electro-catalysis     
Received: 02 August 2012      Published: 26 November 2012
MSC2000:  O646  

The project was supported by the International Science and Technology Cooperation Program of China (2010DFB63680), Research Project of Ministry of Education of Zhejiang Province, China (Y201225711), and Key Project of National Science Foundation of Zhejiang Province, China (Z4100790).

Cite this article:

ZHOU Yang, CHU You-Qun, LIU Wei-Ming, MA Chun-An. Nano-WO3 Modified Carbon Nanotube Supported Pt and Their Electrocatalytic Activity for Methanol Electro-Oxidation. Acta Phys. -Chim. Sin., 2013, 29(02): 287-292.

URL:     OR

(1) Che, G. L.; Lakschmi, B. B.; Fisher, E. R.; Martin, C. R. Nature1998, 393, 346. doi: 10.1038/30694
(2) Li,W. Z.; Liang, C. H.; Qiu, J. S.; Zhou,W. J.; Han, H. M.;Wei,Z. B.; Sun, G. Q.; Xin, Q. Carbon 2002, 40, 791. doi: 10.1016/S0008-6223(02)00039-8
(3) Zhao, Z.; Fang, X.; Li, Y.;Wang, Y.; Shen, P. K.; Xie, F.; Zhang,X. Electrochem. Commun. 2009, 11, 290. doi: 10.1016/j.elecom.2008.11.034
(4) Prabhuram, J.; Zhao, T. S.; Tang, Z. K.; Chen, R.; Liang, Z. X.J. Phys. Chem. B 2006, 110, 5245. doi: 10.1021/jp0567063
(5) Nie, S. L.; Zhao, Y. C.; Fan,W. J.; Tian, J. N.; Ning, Z.; Li, X.X. Acta Phys. -Chim. Sin. 2012, 28, 871. [聂素连, 赵彦春,范文杰, 田建袅, 宁珍, 李笑笑. 物理化学学报, 2012, 28,871.] doi: 10.3866/PKU.WHXB201202013
(6) Yang, H. Y.; Guo, P. P.; Li,W. S. Acta Phys. -Chim. Sin. 2009,25, 719. [杨红艳, 郭盼盼, 李伟善. 物理化学学报, 2009, 25,719.] doi: 10.3866/PKU.WHXB20090425
(7) Ganesan, R.; Lee, J. S. J. Power Sources 2006, 157, 217.doi: 10.1016/j.jpowsour.2005.07.069
(8) Jusys, Z.; Schmidt, T. J.; Dubau, L.; Lasch, K.; Jorissen, L.;Garche, J.; Behm, R. J. J. Power Sources 2002, 105, 297. doi: 10.1016/S0378-7753(01)00955-7
(9) Tseung, A. C.; Chen, K. Y. Catal. Today 1997, 38, 439. doi: 10.1016/S0920-5861(97)00053-9
(10) Raghuveer, V.; Viswanathan, B. J. Power Sources 2005, 144, 1.doi: 10.1016/j.jpowsour.2004.11.033
(11) Li,W. S.; Tian, L. P.; Huang, Q. M.; Chen, H. Y.; Lian, X. P.J. Power Sources 2002, 104, 281. doi: 10.1016/S0378-7753(01)00961-2
(12) Huang, Y. J.; Li,W. S.; Huang, Q. D.; Li,W.; Zhang, Q. L.;Jiang, L. S. Chem. J. Chin. Univ. 2007, 28, 921. [黄幼菊, 李伟善, 黄青丹, 李伟, 张庆龙, 蒋腊生. 高等学校化学学报,2007, 28, 921.]
(13) Huang, Y. J.; Dai, H. H.; Li,W. S. J. Power Sources 2008, 184,348. doi: 10.1016/j.jpowsour.2008.04.004
(14) Ang, L. M.; Hor, T. S. A.; Xu, G. Q.; Tung, C. H.; Zhao, S. P.;Wang, J. L. Chem. Mater. 1999, 11, 2115. doi: 10.1021/cm990078i
(15) Mu, Y. Y.; Liang, H. P.; Hu, J. S.; Jiang, L.;Wan, L. J. J. Phys. Chem. B 2005, 109, 22212. doi: 10.1021/jp0555448
(16) Shen, P. K.; Chen, K. Y.; Tseung, A. C. C. J. Electrochem. Soc.1995, 142, L85.
(17) Shen, P. K.; Tseung, A. C. C. J. Electrochem. Soc. 1994, 141,3082. doi: 10.1149/1.2059282
(18) Shen, P. K.; Chen, K. Y.; Tseung, A. C. C. J. Chem. Soc. Faraday Trans. 1994, 90, 3089. doi: 10.1039/ft9949003089
(19) Cui, X.; Shi, J.; Chen, H.; Zhang, L. L.; Guo, J.; Gao, J. J. Phys. Chem. B 2008, 112, 12024. doi: 10.1021/jp803565k
(20) Jayaraman, S.; Jaramillo, T. F.; Baeck, S.; McFarland, E.W.J. Phys. Chem. B 2005, 109, 22958. doi: 10.1021/jp053053h
(21) Zhang, D. Y.; Ma, Z. F.;Wang, G. X.; Konstantinov, K.; Yuan,X. X.; Liu, H. K. Elec-Trochem. Solid State Lett. 2006, 9, A423.
(22) Yang, C. Z.; Chan, K. Y.; Zhang, X. Electrochimica Acta 2012,75, 262. doi: 10.1016/j.electacta.2012.04.107
(23) Rajesh, B.; Karthik, V.; Karthikeyan, S.; Ravindranathan, T. K.;Viswanathan, B. Fuel 2002, 81, 2177. doi: 10.1016/S0016-2361(02)00162-X
(24) Shen, P. K.; Chen, K. Y.; Tseung, A. C. C. J. Electroanal. Chem.1995, 389, 223. doi: 10.1016/0022-0728(95)03974-L
(25) Chen, K. Y.; Shen, P. K.; Tseung, A. C. C. J. Electrochem. Soc.1995, 142, L54.
(26) Muthuraman, N.; Guruvaiah, P. K.; Agneeswara, P. G. Materials Chemistry and Physics 2012, 133, 924. doi: 10.1016/j.matchemphys.2012.01.118
(27) Cui, Z. M.; Feng, L.G.; Liu, C. P.; Xing,W. J. Power Sources2011, 196, 2621. doi: 10.1016/j.jpowsour.2010.08.118
(28) Poh, C. K.; Lim, S. H.; Pan, H.; Lin, J.; Lee, J. Y. J. Power Sources 2008, 176, 70. doi: 10.1016/j.jpowsour.2007.10.049
(29) Park, K.W.; Ahn, K. S.; Nah, Y. C.; Choi, J. H.; Sung, Y. E.J. Phys. Chem. B 2003, 107, 4352. doi: 10.1021/jp022515d

[1] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.
[2] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[3] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[4] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[5] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[6] Ji-Ye XIA,Guo-Dong DONG,Bo-Yuan TIAN,Qiu-Ping YAN,Jie HAN,Song QIU,Qing-Wen LI,Xue-Lei LIANG,Lian-Mao PENG. Contact Resistance Effects in Carbon Nanotube Thin Film Transistors[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 1029-1035.
[7] Qing LI,Deng-Feng YANG,Jian-Hua WANG,Qi WU,Qing-Zhi LIU. Biomimetic Modification and Desalination Behavior of (15, 15) Carbon Nanotubes with a Diameter Larger than 2 nm[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 691-700.
[8] Hao-Yu SUN,Jin-Huan PU,Gui-Hua TANG. High-Performance Thermogalvanic Cell Based on Organic Nanofluids[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2555-2562.
[9] Kai-Lun XIA,Mu-Qiang JIAN,Ying-Ying ZHANG. Advances inWearable and Flexible Conductors Based on Nanocarbon Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2427-2446.
[10] Li-Jiang YANG,Yi-Qin GAO. Molecular Dynamic Simulations of the Effects of Trimethylamine-N-oxide/Urea Mixture on the Hydration of Single-Walled Carbon Nanotube Interiors[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 313-320.
[11] GU Ze-Xing, TU Chang-Neng, WANG Yun, YANG Ji-Jun, LIU Ning, LIAO Jia-Li, YANG Yuan-You, TANG Jun. Preparation of Carbon Aerogels and Adsorption of Uranium(VI) from Aqueous Solution[J]. Acta Phys. -Chim. Sin., 2015, 31(Suppl): 95-100.
[12] Jie. ZHANG,Mei-Ling. DOU,Feng. WANG,Jing-Jun. LIU,Zhi-Lin. LI,Jing. JI,Ye. SONG. Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1727-1732.
[13] SHEN Zhuang-Lin, HE Gao-Hong, ZHANG Ning, HAO Ce. Molecular Dynamics Simulation of Reverse-Osmotic Salt Rejection and Water Transport through Double-Walled Carbon Nanotube[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1025-1034.
[14] LI Li-Xiang, ZHAO Hong-Wei, XU Wei-Wei, ZHANG Yan-Qiu, AN Bai-Gang, GENG Xin. Preparation and Electrocatalytic Performance of Iron Based Nitrogen Doped Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2015, 31(3): 498-504.
[15] Huang-Qing. YE,Yong-Hong. DENG,Yan. YAN,Mei-Jie. ZHANG,Yong. QIAN,Xue-Qing. QIU. Influence of Soldium Lignosulfonate with Different Molecular Weights on the Dispersion of Multiwalled Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2015, 31(10): 1991-1996.