Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (02): 377-384    DOI: 10.3866/PKU.WHXB201212101
CATALYSIS AND SURFACE SCIENCE     
Adsorption of Nicotine from Aqueous Solution by Activated Carbons Prepared from Chinese Fir Sawdust
YANG Ji-Liang, ZHOU Jian-Bin
College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
Download:   PDF(1744KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Adsorption of nicotine from aqueous solution by activated carbons with different pore sizes and chemical properties was studied. Activated carbons were prepared from Chinese fir sawdust by chemical activation with zinc chloride (called AC-Z) or physical activation with steam (called AC-H). The properties of the samples were compared with those of a commercial coconut-based activated carbon, named AC-C. The surface area and pore structure of the samples were determined by a surface area and porosity analyzer, and surface oxygen groups were characterized by Boehm titration. Adsorption experiments were performed under varying contact time, initial concentration, and temperature. The experimental data suggested that micropores, acidic groups, and the metal atoms play important roles in adsorption of nicotine. The different effects of temperature on the three samples also explain the role of the activated sites. The amount of nicotine adsorbed by AC-Z, which contained more activated sites than the other samples, first increased and then decreased with increasing temperature. This is because increased temperature accelerated the decomposition of nicotine molecules and their conjugation with activated sites, but if it became too high, the probability and strength of molecular collisions increased, causing adsorbed molecules to dissociate from activated sites. AC-H and AC-C, which both contained micropores and activated sites, showed different performance. Nicotine was physically adsorbed first: the surface oxygen groups bonded to nicotine molecules, which blocked the micropores of the adsorbents. Pseudofirst order, pseudo-second order, and intraparticle diffusion kinetic models were used to interpret the adsorption mechanism. Kinetic studies showed adsorption of nicotine was rapid and followed a pseudosecond order model. Thermodynamic parameters ΔG0, ΔH0 and ΔS0 were also calculated to predict the nature of adsorption, and indicated that adsorption was endothermic and spontaneous. The low ΔH0 values of AC-Z and AC-H show that nicotine molecules interacted strongly with activated sites, so they require less isosteric heat to adsorb the same amount of nicotine as AC-C, and also indicate that the activated sites play a role in adsorption.



Key wordsNicotine      Adsorption      Pore size      Chemical character      Kinetics     
Received: 13 August 2012      Published: 10 December 2012
MSC2000:  O647  
Fund:  

The project was supported by the Doctorate Fellowship Foundation of Nanjing Forestry University, China (2011YB005), China Forestry Science & Technology Promotion Program, China (2010-34), and 2011 Industrialization Program of Scientific Achievements in Colleges, China (JHB2011-11).

Cite this article:

YANG Ji-Liang, ZHOU Jian-Bin. Adsorption of Nicotine from Aqueous Solution by Activated Carbons Prepared from Chinese Fir Sawdust. Acta Phys. Chim. Sin., 2013, 29(02): 377-384.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201212101     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I02/377

(1) Rakic, V.; Damjanovic, L.; Rac, V.; Stošic, D.; Dondur, V.;Auroux, A. Water Res. 2010, 44, 2047. doi: 10.1016/j.watres.2009.12.019
(2) Adnadjevic, B.; Lazarevic, N.; Jovanovic, J. Appl. Surf. Sci.2010, 257, 1425. doi: 10.1016/j.apsusc.2010.08.055
(3) Chen, Z.; Zhang, L.; Tang, Y.; Jia, Z. Appl. Surf. Sci. 2006, 252,2933. doi: 10.1016/j.apsusc.2005.04.044
(4) Sheridan, R. P.; Nilakantan, R.; Dixon, J. S.; Venkatarghavan, R.Med. Chem. 1986, 29, 899. doi: 10.1021/jm00156a005
(5) Akcay, G.; Yurdakoc, K. J. Sci. Ind. Res. 2008, 67, 451.
(6) Lazarevic, N.; Adnadjevic, B.; Jovanovic, J. Appl. Surf. Sci.2011, 257, 8017. doi: 10.1016/j.apsusc.2011.04.076
(7) Shin, J. H.; Park, S. S.; Ha, C. S. Colloids Surf B: Biointerfaces2011, 84, 579. doi: 10.1016/j.colsurfb.2011.02.022
(8) Kowalczyk, P.; Ciach, A.; Neimark, A. V. Langmuir 2008, 24,6603. doi: 10.1021/la800406c
(9) Dural, M. U.; Cavas, L.; Papageorgiou, S. K.; Katsaros, F. K.Chem. Eng. J. 2011, 168, 77. doi: 10.1016/j.cej.2010.12.038
(10) Demiral, H.; Demiral, I.; Karabacako\lu, B.; Tümsek, F. Chem. Eng. Res. Des. 2011, 89, 206. doi: 10.1016/j.cherd.2010.05.005
(11) Nowicki, P.;Wachowska, H.; Pietrzak, R. J. Hazard. Mater.2010, 181, 1088. doi: 10.1016/j.jhazmat.2010.05.126
(12) Ip, A.W. M.; Barford, J. P.; McKay, G. Bioresour. Technol.2008, 99, 8909. doi: 10.1016/j.biortech.2008.04.076
(13) Tang, L.; Zhan, L.; Yang, G. Z.; Yang, J. H.;Wang, Y. L.; Qiao,W. M.; Ling L. C. New Carbon Mater. 2011, 26, 237. doi: 10.1016/S1872-5805(11)60079-6
(14) Zhao, Z.; Li, X.; Li, Z. Chem. Eng. J. 2011, 173, 150. doi: 10.1016/j.cej.2011.07.051
(15) Bulut, Y.; Aydin, H. Desalination 2006, 194, 259. doi: 10.1016/j.desal.2005.10.032
(16) Kilic, M.; Apaydin-Varol, E.; Pütün, A. E. J. Hazard. Mater.2011, 189, 397. doi: 10.1016/j.jhazmat.2011.02.051
(17) Fernandes, A. N.; Almeida, C. A. P.; Menezes, C. T. B.; Debacher,N. A.; Sierra, M. M. D. J. Hazard. Mater. 2007, 144, 412. doi: 10.1016/j.jhazmat.2006.10.053
(18) Ahmad, A. L.; Chan, C. Y.; Abd Shukor, S. R.; Mashitah, M. D.Chem. Eng. J. 2009, 148, 378. doi: 10.1016/j.cej.2008.09.011
(19) Wu, Z.; Joo, H.; Lee, K. Chem. Eng. J. 2005, 112, 227. doi: 10.1016/j.cej.2005.07.011
(20) Barka, N.; Abdennouri, M.; Makhfouk, M. E. J. Taiwan Inst. Chem. E 2011, 42, 320. doi: 10.1016/j.jtice.2010.07.004
(21) Hameed, B. H.; Ahmad, A. A.; Aziz, N. Chem. Eng. J. 2007,133, 195. doi: 10.1016/j.cej.2007.01.032
(22) Zhou, L. C.; Meng, X. G.; Li, J. M.; Hu,W.; Liu, B.; Du, J. Acta Phys. -Chim. Sin. 2012, 28, 1615. [周良春, 孟祥光, 李建梅,胡伟, 刘波, 杜娟. 物理化学学报, 2012, 28, 1615.] doi: 10.3866/PKU.WHXB201204282
(23) Ucuna, H.; Bayhan, Y. K.; Kaya, Y. J. Hazard. Mater. 2008, 153,52. doi: 10.1016/j.jhazmat.2007.08.018
(24) Lin, K.; Pan, J.; Chen, Y.; Cheng, R.; Xu, X. J. Hazard. Mater.2009, 161, 231. doi: 10.1016/j.jhazmat.2008.03.076
(25) Zhang, J.; Fu, H.; Lv, X.; Tang, J.; Xu, X. Biomass Bioenergy2011, 35, 464. doi: 10.1016/j.biombioe.2010.09.002
(26) Sharma, P.; Kaur, R.; Baskar, C.; Chung,W. J. Desalination2010, 259, 249. doi: 10.1016/j.desal.2010.03.044
(27) Wang, S.; Zhu, Z. H. Dyes Pigments 2007, 75, 306. doi: 10.1016/j.dyepig.2006.06.005
(28) Kavitha, D.; Namasivayam, C. Bioresour. Technol. 2007, 98, 14.doi: 10.1016/j.biortech.2005.12.008
(29) Barton, S. S. Carbon 1987, 25, 343. doi: 10.1016/0008-6223(87)90005-4
(30) Zhao, X.; Zhang, G.; Jia, Q.; Zhao, C.; Zhou,W.; Li,W. Chem. Eng. J. 2011, 171, 152. doi: 10.1016/j.cej.2011.03.080

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[3] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[4] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[6] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[7] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[8] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[9] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[10] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[11] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[12] NIU Hui-Chang, JI Dan, LIU Nai-An. Method for Optimizing the Kinetic Parameters for the Thermal Degradation of Forest Fuels Based on a Hybrid Genetic Algorithm[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2223-2231.
[13] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2264-2270.
[14] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2133-2145.
[15] JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1933-1940.