Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (03): 585-589    DOI: 10.3866/PKU.WHXB201212253
Fabrication and Visible-Light Photocatalytic Activity of In situ Carbon and Nitrogen Co-Doped TiO2 Hollow Sphere
LIU Su-Qin1,2, DAI Gao-Peng1,2, LIANG Ying1,2, LIU Hua-Jun1, LIANG Gui-Jie2
1 Department of Chemical engineering and Food Science; Hubei University of arts and science, Xiangyang 441053, Hubei Province, P. R. China;
2 Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Xiangyang 441053, Hubei Province, P. R. China
Download:   PDF(5338KB) Export: BibTeX | EndNote (RIS)      


Carbon and nitrogen co-doped TiO2 hollow spheres (CNTHs) were synthesized by hydrothermal treatment of titanium carbonitride (TiCN) in a mixture of H2O2, HF, ethanol, and water. CNTHs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-visible (UV-Vis) diffuse reflectance spectroscopy. Some of the carbon and nitrogen from TiCN was doped into the lattice of TiO2 in situ, and some carbon atoms were incorporated into the interstitial positions of the TiO2 lattice. The CNTHs exhibited enhanced absorption over the whole visible-light region and an obvious red shift at the absorption edges compared with that of TiO2. The ability of the CNTHs to degrade methylene blue (MB) in aqueous solution under visible light irradiation (λ≥400 nm) was investigated. The CNTHs showed much higher photocatalytic activity than P25 in the degradation of MB because of the synergetic effects of their strong visible absorption and unique hollow sphere structure.

Key wordsCarbon and nitrogen co-doping      TiO2 hollow sphere      Visible light      Photocatalysis     
Received: 02 October 2012      Published: 25 December 2012
MSC2000:  O644  

The project was supported by the Natural Science Foundation of Hubei Province, China (2012FFB01903) and Research Program of Hubei Province Department of Education, China (T201215, Z20102601, Q20122507).

Cite this article:

LIU Su-Qin, DAI Gao-Peng, LIANG Ying, LIU Hua-Jun, LIANG Gui-Jie. Fabrication and Visible-Light Photocatalytic Activity of In situ Carbon and Nitrogen Co-Doped TiO2 Hollow Sphere. Acta Phys. Chim. Sin., 2013, 29(03): 585-589.

URL:     OR

(1) Chen, X. B.; Mao, S. S. Chem. Rev. 2007, 107, 2891. doi: 10.1021/cr0500535
(2) Shen, J. J.; Liu, C.; Zhu, Y. D.; Li,W.; Feng, X.; Lu, X. H. ActaPhys. -Chim. Sin. 2009, 25, 1013. [沈晶晶, 刘畅, 朱育丹,李伟, 冯新, 陆小华. 物理化学学报, 2009, 25, 1013.] doi: 10.3866/PKU.WHXB20090421
(3) Yang, T. S.; Yang, M. C.; Shiu, C. B.; Chang,W. K.;Wong, M.S. Appl. Surf. Sci. 2006, 252, 3729. doi: 10.1016/j.apsusc.2005.05.070
(4) Asahi, R.; Morikawa, T.; Ohwaki, T. Science 2001, 293, 269.doi: 10.1126/science.1061051
(5) Li, X. B.; Jiang, X. Y.; Huang, J. H.;Wang, X. J. Chin. J. Chem.2008, 26, 2161. doi: 10.1002/cjoc.v26:12
(6) Wu, G. S.; Nishikawa, T.; Ohtani, B.; Chen, A. C. Chem. Mater.2007, 19, 4530. doi: 10.1021/cm071244m
(7) Yu, J. G.; Dai, G. P.; Xiang, Q. J.; Jaroniec, M. J. Mater. Chem.2011, 21, 1049. doi: 10.1039/c0jm02217a
(8) Yu, J. C.; Ho,W. K.; Yu, J. G.; Yip, H. Y.;Wong, P. K.; Zhao, J.C. Environ. Sci. Technol. 2005, 39, 1175. doi: 10.1021/es035374h
(9) Wei, Y. F.; Ni, L. S.; Cui, P. J. Hazard. Mater. 2008, 156, 135.doi: 10.1016/j.jhazmat.2007.12.018
(10) Chen, D. M.; Jiang, Z. Y.; Geng, J. Q.;Wang, Q.; Yang, D. Ind.Eng. Chem. Res. 2007, 46, 2741. doi: 10.1021/ie061491k
(11) Wu, Y. M.; Xing, M. Y.; Zhang, J. L. J. Hazard. Mater. 2011,192, 368.
(12) Tian, H. J.; Hu, L. H.; Zhang, C. N.; Mo, L.; Li,W. X.; Sheng,J.; Dai, S. Y. J. Mater. Chem. 2012, 22, 9123. doi: 10.1039/c2jm16896k
(13) Dolat, D.; Quici, N.; Kusiak Nejman, E.; Morawski, A.W.;Pum, G. L. Appl. Catal. B 2012, 115-116, 81.
(14) Wang, X.; Lim, T. T. Appl. Catal. B 2010, 100, 355. doi: 10.1016/j.apcatb.2010.08.012
(15) Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim. Sin. 2009, 25, 1829.[张晓艳, 崔晓莉. 物理化学学报, 2009, 25, 1829.] doi: 10.3866/PKU.WHXB20090905
(16) Li, H.; Bian, Z.; Zhu, J.; Zhang, D. Q.; Li, G. S.; Huo, Y. N.; Li,H.; Lu, Y. F. J. Am. Chem. Soc. 2007, 129, 8406. doi: 10.1021/ja072191c
(17) Yu, J. G.; Liu, S.W.; Yu, H. G. J. Catal. 2007, 249, 59. doi: 10.1016/j.jcat.2007.03.032
(18) Syoufian, A.; Satriya, O. H.; Nakashima, K. Catal. Commun.2007, 8, 755. doi: 10.1016/j.catcom.2006.08.047
(19) Gu, D. E.; Lu, Y.; Yang, B. C.; Hu, Y. D. Chem. Commun. 2008,2453.
(20) Wang, H. Q.;Wu, Z. B.; Liu, Y. J. Phys. Chem. C 2009, 113,13317.
(21) Wu, Z. B.; Dong, F.; Zhao,W. R.;Wang, H. Q.; Liu, Y.; Guan,B. H. Nanotechnology 2009, 20, 235701. doi: 10.1088/0957-4484/20/23/235701
(22) Nakamura, R.; Tanaka, T.; Nakato, Y. J. Phys. Chem. B 2004,108, 10617.
(23) Yu, J. G.; Yu, X. X. Enviro. Sci. Technol. 2008, 42, 4902. doi: 10.1021/es800036n

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[3] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[4] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[5] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[6] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[7] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[8] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[9] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[10] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[11] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.
[12] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.
[13] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. Chim. Sin., 2016, 32(3): 737-744.
[14] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.
[15] HE Rong-An, CAO Shao-Wen, YU Jia-Guo. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2841-2870.