ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2013,Vol.29>> Issue(03)>> 498-507     doi: 10.3866/PKU.WHXB201301042         中文摘要
Feature Selection for High-Dimensional Data Based on Ridge Regression and SVM and Its Application in Peptide QSAR Modeling
WANG Zhi-Ming1,2,3, HAN Na1,2, YUAN Zhe-Ming1,2, WU Zhao-Hua3
1 Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Changsha 410128, P. R. China;
2 Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, 410128, P. R. China;
3 College of Science, Hunan Agricultural University, Changsha 410128, P. R. China
Full text: PDF (1366KB) Export: BibTeX | EndNote (RIS)

Absolute weight values estimated from test data by ridge regression (RR) can reflect the significance of corresponding features. Based on RR and support vector machine (SVM), a new feature selection algorithm for high-dimensional data is proposed. Examples from bitter tasting thresholds (BTT) and cytotoxic T lymphocyte (CTL) epitopes are presented. All 531 physicochemical property parameters were employed to express each residue of one peptide, thus 1062 and 4779 descriptors were obtained for BTT and CTL, respectively. Each sample was divided into training and test sets, and weight estimates of all training set descriptors were generated by RR. According to the descending order of the weights, corresponding features were gradually selected until the mean square error (MSE) of leave-one-out cross validation (LOOCV) increased significantly. Based on smaller training datasets obtained from the previous step, the reserved features were available from multiple elimination rounds. 7 and 18 descriptors were selected by the new method for BTT and CTL, respectively. A quantitative structure-activity relationship (QSAR) model based on support vector regression (SVR) was established on extracted data with the reserved descriptors, and was then used for test data prediction. The fitting, LOOCV, and external prediction accuracies were significantly improved with respect to reported literature values. Because of the calculation speed, clear physicochemical meaning, and ease of interpretation, the new method is widely applicable to regression forecasting of high-dimensional data such as QSAR modeling of peptide or proteins.

Keywords: Quantitative structure-activity relationship   Support vector machine   Ridge regression   Feature selection   High-dimensional feature  
Received: 2012-09-24 Accepted: 2013-01-02 Publication Date (Web): 2013-01-04
Corresponding Authors: Email:

Fund: The project was supported by the Science Foundation for Distinguished Young Scholars of Hunan Province, China (10JJ1005) and Specialized Research Fund for the Doctoral Program of Higher Education, China (20124320110002).

Cite this article: WANG Zhi-Ming, HAN Na, YUAN Zhe-Ming, WU Zhao-Hua. Feature Selection for High-Dimensional Data Based on Ridge Regression and SVM and Its Application in Peptide QSAR Modeling[J]. Acta Phys. -Chim. Sin., 2013,29 (03): 498-507.    doi: 10.3866/PKU.WHXB201301042

(1) Ding, J. L.; Ho, B. Drug Dev. Res. 2004, 62 (4), 317.
(2) Anfinsen, C. B.; Haber, E.; Sela, M.; White, F. H., Jr. Proc.Natl. Acad. Sci . U. S. A. 1961, 47, 1309. doi: 10.1073/pnas.47.9.1309
(3) Sneath, P. H. J. Theor. Biol. 1966, 12 (2), 157. doi: 10.1016/0022-5193(66)90112-3
(4) Kidera, A.; Konishi, Y.; Oka, M.; Ooi, T.; Scheraga, H. A.J. Protein Chem. 1985, 4 (1), 23. doi: 10.1007/BF01025492
(5) Hellberg, S.; Eriksson, L.; Jonsson, J.; Lindgren, F.; Sjöström,M.; Skagerberg, B.;Wold, S.; Andrews, P. Int. J. Pept. ProteinRes. 1991, 37 (5), 414.
(6) Sandberg, M.; Eriksson, L.; Jonsson, J.; Sjöström, M.;Wold, S.J. Med. Chem. 1998, 41 (14), 2481. doi: 10.1021/jm9700575
(7) Liang, G. Z.; Mei, H.; Zhou, P.; Zhou, Y.; Li, Z. L. ActaPhys. -Chim. Sin. 2006, 22, 388. [梁桂兆, 梅虎, 周鹏,周原, 李志良. 物理化学学报, 2006, 22, 388.] doi: 10.3866/PKU.WHXB20060327
(8) Liang, G. Z.; Zhou, P.; Zhou, Y.; Zhang, Q. X.; Li, Z. L. ActaChim. Sin. 2006, 64 (5), 393. [梁桂兆, 周鹏, 周原, 张巧霞, 李志良. 化学学报, 2006, 64 (5), 393.]
(9) Zhou, Y.; Mei, H.; Yang, L.; Zhou, P.; Yang, S. B.; Li, Z. L.Chem. J. Chin. Univ. 2007, 28 (7), 1263. [周原, 梅虎,杨力, 周鹏, 杨善斌, 李志良. 高等学校化学学报, 2007,28 (7), 1263.]
(10) Yang, S. B.; Xia, Z. N.; Shu, M.; Mei, H.; Lü, F. L.; Zhang, M.;Wu, Y. Q.; Li, Z. L. Chem. J. Chin. Univ. 2008, 29 (11), 2213.[杨善彬, 夏之宁, 舒茂, 梅虎, 吕凤林, 张梅, 吴玉乾,李志良. 高等学校化学学报, 2008, 29 (11), 2213.]
(11) Li, Z. L.; Li, G. R.; Shu, M.; Sun, J. Y.; Yang, S. B.; Mei, H.;Zhang, M. J.; Zhou, P.;Wu, S. R.; Chen, G. H.; Lü, F. L.; Lü, T.T. Sci. China Ser. B: Chem. 2008, 38 (8), 745. [李志良, 李根容, 舒茂, 孙家英, 杨善斌, 梅虎, 张梦军, 周萍, 吴世荣,陈国华, 吕凤林, 吕廷亭. 中国科学B 辑: 化学, 2008, 38 (8),745.]
(12) Kawashima, S.; Pokarowski, P.; Pokarowska, M.; Kolinski, A.;Katayama, T.; Kanehisa, M. Nucl. Acids Res. 2008, 36 (1),D202.
(13) Dash, M.; Liu, H. Intell. Data Anal. 1997, 1 (3), 131.
(14) Golub, T. R.; Slonim, D. K.; Tamayo, P.; Huard, C.;Gaasenbeek, M.; Mesirov, J. P.; Coller, H.; Loh, M. L.;Downing, J. R.; Caligiuri, M. A.; Bloomfield, C. D.; Lander, E.S. Science 1999, 286 (5439), 531. doi: 10.1126/science.286.5439.531
(15) Kononerko, I. Estimating Attributes: Analysis and Extension ofRelief. In Lecture Notes in Computer Science, Proceedings ofEuropean Conference on Machine Learning, Catania, Italy,April 6-8, 1994; Bergadano, F., Raedt, L. D. Eds.; Springer:Heidelberg, 1994; pp 171-182.
(16) Liu, H.; Setiono, R. A Probabilistic Approach to FeatureSelection-a Filter Solution. In Machine Learning, Proceedingsof the Thirteenth International Conference on MachineLearning, Bari, Italy, July 3-6, 1996; Saitta, L. Ed.; MorganKaufmann: San Fransisco, 1996; pp 319-327.
(17) Kohavi, R.; John, G. H. Artif. Intel. 1997, 97 (1-2), 273.doi: 10.1016/S0004-3702(97)00043-X
(18) Destrero, A.; Mosci, S.; De Mol, C.; Verri, A.; Odone, F.Comput. Manag. Sci. 2008, 6 (1), 25.
(19) Vapnik, V. N. The Nature of Statistical Learning Theory;Springer-Verlag: New York, 1995; pp 87-189.
(20) Hoerl, A. E.; Kennard, R.W. Technometrics 1970, 12, 55.doi: 10.1080/00401706.1970.10488634
(21) Tan, X. S.; Yuan, Z. M.; Zhou, T. J.;Wang, C. J.; Xiong, J. Y.Chem. J. Chin. Univ. 2008, 29 (1), 95. [谭显胜, 袁哲明, 周铁军, 王春娟, 熊洁仪. 高等学校化学学报, 2008, 29 (1), 95.]
(22) Chang, C. C.; Lin, C. J. ACM TIST 2011, 2 (3), 1.
(23) Tropsha, A.; Gramatica, P.; Gombar, V. K. QSAR Comb. Sci.2003, 22 (1), 69.
(24) Cocchi, M.; Johansson, E. Quant. Struct. -Act. Relat. 1993, 12 (1), 1. doi: 10.1002/qsar.v12:1
(25) Collantes, E. R.; Dunn,W. J., III. J. Med. Chem. 1995, 38 (14),2705. doi: 10.1021/jm00014a022
(26) Mei, H.; Liang, G. Z.; Zhou, Y.; Li, Z. L. Chin. Sci. Bull. 2005,50 (16), 1703. [梅虎, 梁桂兆, 周原, 李志良. 科学通报,2005, 50 (16), 1703.] doi: 10.1360/982005-58
(27) Mei, H.; Zhou, Y.; Sun, L. L.; Li, Z. L. Chemistry 2005, (7),534. [梅虎, 周原, 孙立力, 李志良. 化学通报, 2005, (7),534.] doi: 10.3870/zgzzhx.2012.01.022
(28) Liang, G. Z. Construction of Representation Techniques andInvestigation on Structure-Activity Relationship for BiologicalSequences. Ph. D. Dissertation, Chongqing University,Chongqing, 2007. [梁桂兆. 生物序列表征体系构建及结构与功能关系研究[D]. 重庆: 重庆大学, 2007.]
(29) Tan, X. S.;Wang, Z. M.; Tan, S. Q.; Yuan, Z. M.; Xiong, X. Y.Journal of System Simulation 2009, 21 (24), 7795. [谭显胜,王志明, 谭泗桥, 袁哲明, 熊兴耀. 系统仿真学报, 2009, 21 (24), 7795.]
(30) Meek, J. L. Proc. Natl. Acad. Sci. U. S. A. 1980, 77 (3), 1632.doi: 10.1073/pnas.77.3.1632
(31) Harpaz, Y.; Gerstein, M.; Chothia, C. Structure 1994, 2 (7), 641.doi: 10.1016/S0969-2126(00)00065-4
(32) Chothia, C. Nature 1975, 254 (5498), 304. doi: 10.1038/254304a0
(33) Rackovsky, S.; Scheraga, H. A. Macromolecules 1982, 15 (5),1340. doi: 10.1021/ma00233a025
(34) Robson, B.; Suzuki, E. J. Mol. Biol. 1976, 107 (3), 327. doi: 10.1016/S0022-2836(76)80008-3
(35) Parker, J. M. R.; Guo, D.; Hodges, R. S. Biochemistry 1986, 25 (19), 5425. doi: 10.1021/bi00367a013
(36) Bundi, A.;Wüthrich, K. Biopolymers 1979, 18 (2), 285.
(37) Mei, H.; Zhou, Y.; Liao, Z. H.; Li, Z. L. Acta Chim. Sin. 2006,64 (9), 949. [梅虎, 周原, 廖志华, 李志良. 化学学报,2006, 64 (9), 949.]
(38) Frahm, N.; Korber, B. T.; Adams, C. M.; Szinger, J. J.; Draenert,R.; Addo, M. M.; Feeney, M. E.; Yusim, K.; Sango, K.; Brown,N. V.; SenGupta, D.; Piechocka-Trocha, A.; Simonis, T.;Marincola, F. M.;Wurcel, A. G.; Stone, D. R.; Russell, C. J.;Adolf, P.; Cohen, D.; Roach, T.; StJohn, A.; Khatri, A.; Davis,K.; Mullins, J.; Goulder, P. J. R.;Walker, B. D.; Brander, C.J. Virol. 2004, 78 (5), 2187. doi: 10.1128/JVI.78.5.2187-2200.2004
(39) Doytchinova, I. A.; Flower, D. R. J. Med. Chem. 2001, 44,3572. doi: 10.1021/jm010021j
(40) Liang, G. Z.; Li, S. Z. Biopolymers 2007, 88 (3), 401. doi: 10.1002/bip.v88:3
(41) Levitt, M. J. Mol. Biol. 1976, 104, 59. doi: 10.1016/0022-2836(76)90004-8
(42) Tsai, J.; Taylor, R.; Chothia, C.; Gerstein, M. J. Mol. Biol. 1999,290 (1), 253. doi: 10.1006/jmbi.1999.2829
(43) Biou, V.; Gibrat, J. F.; Levin, J. M.; Robson, B.; Garnier, J.Protein Eng. 1988, 2 (3), 185. doi: 10.1093/protein/2.3.185
(44) Schwartz, R.; Istrail, S.; King, J. Protein Science 2001, 10 (5),1023.
(45) Sueki, M.; Lee, S.; Powers, S. P.; Denton, J. B.; Konishi, Y.;Scheraga, H. A. Macromolecules 1984, 17 (2), 148. doi: 10.1021/ma00132a006
(46) Chothia, C. Nature 1974, 248, 338. doi: 10.1038/248338a0
(47) Naderi-Manesh, H.; Sadeghi, M.; Arab, S.; Moosavi Movahedi,A. A. Proteins 2001, 42 (4), 452. doi: 10.1002/1097-0134(20010301)42:4<>1.0.CO;2-N

1. HE Bing, LUO Yong, LI Bing-Ke, XUE Ying, YU Luo-Ting, QIU Xiao-Long, YANG Teng-Kuei.Predicting and Virtually Screening Breast Cancer Targeting Protein HEC1 Inhibitors by Molecular Descriptors and Machine Learning Methods[J]. Acta Phys. -Chim. Sin., 2015,31(9): 1795-1802
2. LIU Hai-Chun, LU Shuai, RAN Ting, ZHANG Yan-Min, XU Jin-Xing, XIONG Xiao, XU An-Yang, LU Tao, CHEN Ya-Dong.Accurate Activity Predictions of B-Raf Type II Inhibitors via Molecular Docking and QSAR Methods[J]. Acta Phys. -Chim. Sin., 2015,31(11): 2191-2206
3. LI Yong, ZHOU Wei, DAI Zhi-Jun, CHEN Yuan, WANG Zhi-Ming, YUAN Zhe-Ming.Predicting the Protein Folding Rate Based on Sequence Feature Screening and Support Vector Regression[J]. Acta Phys. -Chim. Sin., 2014,30(6): 1091-1098
4. SHI Jing-Jie, CHEN Li-Ping, CHEN Wang-Hua.QSPR Models of Compound Viscosity Based on Iterative Self-Organizing Data Analysis Technique and Ant Colony Algorithm[J]. Acta Phys. -Chim. Sin., 2014,30(5): 803-810
5. LI Bing-Ke, CONG Yong, TIAN Zhi-Yue, XUE Ying.Predicting and Virtually Screening the Selective Inhibitors of MMP-13 over MMP-1 by Molecular Descriptors and Machine Learning Methods[J]. Acta Phys. -Chim. Sin., 2014,30(1): 171-182
6. HAN Na, YUAN Zhe-Ming, CHEN Yuan, DAI Zhi-Jun, WANG Zhi-Ming.Prediction of HLA-A*0201 Restricted Cytotoxic T Lymphocyte Epitopes Based on High-Dimensional Descriptor Nonlinear Screening[J]. Acta Phys. -Chim. Sin., 2013,29(09): 1945-1953
7. CONG Yong, XUE Ying.Quantitative Structure-Activity Relationship Study of the Non-Nucleoside Inhibitors of HCV NS5B Polymerase by Machine Learning Methods[J]. Acta Phys. -Chim. Sin., 2013,29(08): 1639-1647
8. SUN Sang-Dun, MI Si-Qi, YOU Jing, YU Ji-Liang, HU Song-Qing, LIU Xin-Yong.HQSAR Study and Molecular Design of Benzimidazole Derivatives as Corrosion Inhibitors[J]. Acta Phys. -Chim. Sin., 2013,29(06): 1192-1200
9. KANG Cong-Min, ZHAO Xu-Hao, WANG Xin-Yu, CHENG Jia-Gao, LÜ Ying-Tao.QSAR and Molecular Docking on Five-Membered Heterocyclopyrimidines as Thymidylate Synthase Inhibitors[J]. Acta Phys. -Chim. Sin., 2013,29(02): 431-438
10. LÜ Wei, XUE Ying, MENG Qing-Wei.Classification Prediction of Inhibitors of H1N1 Neuraminidase by Machine Learning Methods[J]. Acta Phys. -Chim. Sin., 2013,29(01): 217-223
11. SHI Jing-Jie, CHEN Li-Ping, CHEN Wang-Hua, SHI Ning, YANG Hui, XU Wei.Prediction of the Thermal Conductivity of Organic Compounds Using Heuristic and Support Vector Machine Methods[J]. Acta Phys. -Chim. Sin., 2012,28(12): 2790-2796
12. HUO Wei-Feng, GAO Na, YAN Yan, LI Ji-Yang, YU Ji-Hong, XU Ru-Ren.Decision Trees Combined with Feature Selection for the Rational Synthesis of Aluminophosphate AlPO4-5[J]. Acta Phys. -Chim. Sin., 2011,27(09): 2111-2117
13. DAI Zhi-Jun, ZHOU Wei, YUAN Zhe-Ming.A Novel Method of Nonlinear Rapid Feature Selection for High Dimensional Data and Its Application in Peptide QSAR Modeling Based on Support Vector Machine[J]. Acta Phys. -Chim. Sin., 2011,27(07): 1654-1660
14. Lü Wei, XUE Ying.Prediction of Hepatitis C Virus Non-Structural Proteins 5B Polymerase Inhibitors Using Machine Learning Methods[J]. Acta Phys. -Chim. Sin., 2011,27(06): 1407-1416
15. WANG Dan, ZHANG Yan-Ling, QIAO Yan-Jiang.Support Vector Machine and KStar Models Predict the o-Dealkylation Reaction Mediated by Cytochrome P450[J]. Acta Phys. -Chim. Sin., 2011,27(02): 343-351
16. TAO Wan-Jun, LI Chen-Wen, YIN Zong-Ning.Design of Self-Emulsifying System Based on QSAR[J]. Acta Phys. -Chim. Sin., 2011,27(01): 71-77
17. DUAN Hong-Xia, WANG Rui-Gang, ZHANG Jian-Jun, DONG Yan-Hong, LIANG Xiao-Mei, WU Jing-Ping, WANG Dao-Quan.QSAR of Macrolactone Derivatives with Herbicidal Activity[J]. Acta Phys. -Chim. Sin., 2010,26(04): 1065-1074
18. LV Wei, XUE Ying.Activity Prediction of Hormone-Sensitive Lipase Inhibitors Based on Machine Learning Methods[J]. Acta Phys. -Chim. Sin., 2010,26(02): 471-477
19. HU Song-Qing, HU Jian-Chun, SHI Xin, ZHANG Jun, GUO Wen-Yue.QSAR and Molecular Design of Imidazoline Derivatives as Corrosion Inhibitors[J]. Acta Phys. -Chim. Sin., 2009,25(12): 2524-2530
20. CHEN Yuan, YUAN Zhe-Ming, ZHOU Wei, XIONG Xing-Yao.A Novel QSAR Model Based on Geostatistics and Support Vector Regression[J]. Acta Phys. -Chim. Sin., 2009,25(08): 1587-1592
21. LI Ping, TAN Ning-Xin, RAO Han-Bing, LI Ze-Rong, Chen Yu-Zong.Classification Models for HERG Potassium Channel Inhibitors Based on the Support Vector Machine Approach[J]. Acta Phys. -Chim. Sin., 2009,25(08): 1581-1586
22. WEI Zhuo, ZHANG Huai, CUI Wei, JI Ming-Juan.Molecular Docking and 3D-QSAR on Maleimide Derivatives as Glycogen Synthase Kinase-3β Inhibitors[J]. Acta Phys. -Chim. Sin., 2009,25(05): 890-896
23. MEI Hu, LIU Li, YANG Li, LI Jian, YAN Ning, WANG Qin.Prediction of Antitumor Activities of Indolo[1,2-b]Quinazoline Derivatives Using Electrotopological State Indices for AtomTypes[J]. Acta Phys. -Chim. Sin., 2009,25(04): 747-751
24. JIANG Yu-Ren; QIN Wei.3D-QSAR Analysis on Benzoxazinone Derivatives[J]. Acta Phys. -Chim. Sin., 2008,24(10): 1859-1863
25. FENG Chang-Jun; MU Lai-Long; YNAG Wei-Hua; CAI Ke-Ying.A Mathematical Model between Bioconcentration Factors and Topological Indices of Organic Pollutants[J]. Acta Phys. -Chim. Sin., 2008,24(06): 1053-1057
26. HUANG Qin; ZHUANG Yan; QIAO Xue-Bin; XU Xiao-Jie.Predicted Model of Aggregation of Molecules in Chinese Herbal Drugs by Support Vector Machines[J]. Acta Phys. -Chim. Sin., 2007,23(08): 1141-1144
27. SONG Zhe;LIU Tao;LIU Wei;ZHU Ming-Hua;WANG Xiao-Gang .The QSAR Model Study of Interaction Between Peptides and MHC molecules[J]. Acta Phys. -Chim. Sin., 2007,23(02): 198-205
28. TONG Jian-Bo;ZHANG Sheng-Wan.A New 3D-Descriptor of Amino Acids and Its Application in Quantitative Structure Activity Relationship of Peptide Drugs[J]. Acta Phys. -Chim. Sin., 2007,23(01): 37-43
29. TONG Jian-Bo;ZHOU Peng;ZHANG Sheng-Wan;LIANG Gui-Zhao;TIAN Fei-Fei;LI Mei-Ping;LI Sheng-Shi.QSAR Studies of Anti-HIV Drug HEPT Using 3D-HoVAIF[J]. Acta Phys. -Chim. Sin., 2006,22(06): 721-725
30. ZHOU Yuan;MEI Hu;LIANG Gui-Zhao;LI Zhi-Liang.Physicochemical Parameters of Substituents and Its Application in Quantitative Structure Activity Relationship for Drugs[J]. Acta Phys. -Chim. Sin., 2006,22(04): 486-491
31. LIANG Gui-Zhao; MEI Hu; ZHOU Peng; ZHOU Yuan; LI Zhi-Liang.Study on Quantitative Structure-Activity Relationship by 3D Holographic Vector of Atomic Interaction Field[J]. Acta Phys. -Chim. Sin., 2006,22(03): 388-390
32. QIAO Ying-xin; ZHOU Jia-ju.A 3D-QSAR Study with Energy of Molecular Orbitals on N-Aminoidazoles[J]. Acta Phys. -Chim. Sin., 2006,22(02): 209-214
33. SHEN Bin; LU Zhong-hua; CHI Xue-bin; LÜ Hai-feng; REN Tian-rui.Research on Pseudoreceptor Models for the Inhibitors at GABA Receptors via Flexible Atom Receptor Model[J]. Acta Phys. -Chim. Sin., 2005,21(07): 800-803
34. HUANG Qin; HOU Ting -Jun; XU Xiao-Jie.The Prediction of Caco-2 Permeation Based on Genetic Algorithm[J]. Acta Phys. -Chim. Sin., 2005,21(04): 372-377
35. WU Wen-Juan;LAI Rong;ZHENG Kang-Cheng;YUN Feng-Cun.Quantitative Structure-Activity Relationship of Indolo[1,2-b]quinazoline Derivatives with Antitumor Activity[J]. Acta Phys. -Chim. Sin., 2005,21(01): 28-32
36. Mei Hu;Zhou Yuan;Sun Li-Li;Li Zhi-Liang.A New Descriptor of Amino Acids and Its Application in Peptide QSAR[J]. Acta Phys. -Chim. Sin., 2004,20(08): 821-825
37. Wang Bao-Lei;Ma Ning;Wang Jian-Guo;Ma Yi;Li Zheng-Ming;Li Yong-Hong.3D-QSAR Analysis of New Sulfonylureas Related to Their Herbicidal Activity[J]. Acta Phys. -Chim. Sin., 2004,20(06): 577-581
38. Ding Jun-Jie;Ding Xiao-Qin;Zhao Li-Feng;Chen Ji-Sheng.Three Dimensional Quantitative Structure-activity Relationship of Dihydropyridine Derivatives[J]. Acta Phys. -Chim. Sin., 2003,19(12): 1108-1113
39. Pan Yong-Mei;Ji Ming-Juan.Applications of Genetic Algorithms on 2D-QSAR Analysis of Benzofuran and Benzothiophene Biphenyls as PTP1B Inhibitors[J]. Acta Phys. -Chim. Sin., 2003,19(08): 695-700
40. Zhang Hua-Bei;Li Bo;Dai Mei.QSAR of [99Tcm(NO)Cl(PL)2] Complexes[J]. Acta Phys. -Chim. Sin., 2003,19(05): 460-463
41. Peng Tao;Pei Jian-Feng;Zhou Jia-Ju.Three-dimensional Quantitative Structure-Activity Relationship Study of Tyrosine Kinase Inhibitors[J]. Acta Phys. -Chim. Sin., 2003,19(02): 163-166
42. Zhu Li-Li;Xu Xiao-Jie.3D-QSAR Analyses of Melatonin Antagonists[J]. Acta Phys. -Chim. Sin., 2002,18(12): 1087-1092
43. Zou Xia-Juan;Lai Lu-Hua;Jin Gui-Yu;Huang Gui-Qin.Studies on the 3D-QSAR of Novel 1-aryl-1,4-dihydro-3-acylhydrazinocarbonyl-6-methyl- 4-pyridazinones[J]. Acta Phys. -Chim. Sin., 2002,18(06): 513-516
44. Yang Guang-Fu, Liu Hua-Yin, Yang Xiu-Feng, Yang Hua-Zheng.CoMFA Studies on Herbicidal 1,2,4-Triazolo[1,5-a]pyrimidine-2-Sulfonanilides[J]. Acta Phys. -Chim. Sin., 1999,15(02): 190-192
45. Wang Ren-Xiao, Feng Ya-Bin, Lai Lu-Hua, Tang You-Qi.Structure-Affinity Relationship of lndole-Based for Phospholipase A2[J]. Acta Phys. -Chim. Sin., 1998,14(10): 893-897
46. Wang Ren-Xiao, Liu Liang, Lai Lu-Hua, Tang You-Qi.Structure-Affinity Relationship of Thrombin inhibitors[J]. Acta Phys. -Chim. Sin., 1998,14(10): 887-892
47. Wang Ren-Xiao, Li Wei-Zhong, Lai Lu-Hua, Tang You-Qi.Estimating Binding Affinities for Enzyme-Ligand Complexes[J]. Acta Phys. -Chim. Sin., 1998,14(09): 826-832
48. Huang Zhong-Ping, Pan Jin-Hong, Cai Guo-Qiang, Yu Qing-Sen, Lin Rui-Sen.Study on the Structure-Photosensitivity Relationship of Bis(4-dimethylaminophenyl)squaraine Derivatives[J]. Acta Phys. -Chim. Sin., 1998,14(06): 557-561
49. Wang Jin-Ling, Sun Ming, Su Hua-Qing, Miao Fang-Ming.3D-Quantitative Structure-Activity Relationship Studies of Imidazole-1-carboxylates[J]. Acta Phys. -Chim. Sin., 1998,14(05): 444-447
50. Wang Ren-Xiao, Gao Ying, Liu Liang, Lai Lu-Hua.Role of Compound Orientation in CoMFA Studies[J]. Acta Phys. -Chim. Sin., 1998,14(01): 1-4
51. Chen Hong-Ming,Zhou Jia-Ju,Xie Gui-Rong,Ren Tian-Rui.A QSAR Research Method Based on Pseudoreceptor Model[J]. Acta Phys. -Chim. Sin., 1997,13(07): 626-631
52. Zhu Long-Guan, Yu Qing-Sen, Chen Kai-Xian, Cai Cuo-Qiang, Lin Rui-Sen.Study on the Quantitative Structure-activity Relationship of N1 Position of Quinolone[J]. Acta Phys. -Chim. Sin., 1995,11(10): 925-928
53. Luo Zhao-Wen, Wang Dan-Dan, Lai Lu-Hua, Xu Xiao-Jia, Li Chong-Xi.3D-QSAR Studies of Galanthamine and Analogs[J]. Acta Phys. -Chim. Sin., 1995,11(05): 419-423
54. Feng Jun, Zhou Jia-Ju, Li Ren-Li.Comparative Molecular Field Analysis of Inotropic Compounds and Pyridazinone[J]. Acta Phys. -Chim. Sin., 1995,11(03): 206-210
55. LIN Feng, FU Xin-Mei, WANG Chao, JANG Si-Yu, WANG Jing-Hui, ZHANG Shu-Wei, YANG Ling, LI Yan.QSAR, Molecular Docking and Molecular Dynamics on 3C-like Protease Inhibitors[J]. Acta Phys. -Chim. Sin., 0,(): 0-0
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388
^ Top