Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (03): 576-584    DOI: 10.3866/PKU.WHXB201301043
Reflux Preparation and Photocatalytic Performance of Bismuth Phosphate Nanorods
ZHU Yan-Yan1,2, LIU Yan-Fang1, LÜ Yan-Hui1, WANG Hua2, LING Qiang2, ZHU Yong-Fa1
1 Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China;
2 Institute of Aeronautical Meteorology and Chemical Defence, Equipment Academy of Air Force, Beijing 100085, P. R. China
Download:   PDF(20857KB) Export: BibTeX | EndNote (RIS)      


BiPO4 nanorods were synthesized by reflux, and the effect of reaction time, reactant ratio and concentration, and pH value on BiPO4 crystal structure and morphology was investigated. Nanorods were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area analysis (BET), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The ability of BiPO4 to photo-degrade methylene blue (MB) was investigated. The reaction time and reactant concentration influenced the product morphology. The reactant ratio and pH value had a large effect on the product crystal structure and morphology, and also on the photo-activity of BiPO4. Highly UV active BiPO4 nanorods of monoclinic monazite/hexagonal mixed crystal structure suitable for photocatalysis could be prepared by carefully controlling the above conditions.

Key wordsRefluxing method      Controllable synthesis      Bismuth phosphate      Mixed crystal structure      Photocatalysis     
Received: 24 October 2012      Published: 04 January 2013
MSC2000:  O644  

The project was supported by the National Natural Science Foundation of China (20925725, 50972070), Special Project on Innovative Method from the Ministry of Science and Technology of China and Tsinghua University Initiative Scientific Research Program, China.

Cite this article:

ZHU Yan-Yan, LIU Yan-Fang, LÜ Yan-Hui, WANG Hua, LING Qiang, ZHU Yong-Fa. Reflux Preparation and Photocatalytic Performance of Bismuth Phosphate Nanorods. Acta Phys. Chim. Sin., 2013, 29(03): 576-584.

URL:     OR

(1) Vincenzo, B.; Alberto, C.; Margherita, V. ChemSusChem 2008,1 (1-2), 26.
(2) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev.2010, 110 (11), 6503. doi: 10.1021/cr1001645
(3) Matsumoto, Y. J.; Koinuma, H.; Ohsawa, T. J. Phys. Chem. C2007, 111 (28), 10523. doi: 10.1021/jp072365c
(4) Nathaniel, L. H.; Jaewook, B. Chem. Mater. 2007, 19, 1883.doi: 10.1021/cm062934d
(5) Yu, K.; Yang, S. G.; Liu, C.; Chen, H. Z.; Li, H.; Sun, C.;Stephen, A. B. Environ. Sci. Technol. 2012, 46 (13), 7318. doi: 10.1021/es3001954
(6) Zhang, Q.; Li, X. J.; Li, F. B.; Chang, J. Acta Phys. -Chim. Sin.2004, 20 (5), 507. [张琦, 李新军, 李芳柏, 常杰. 物理化学学报, 2004, 20 (5), 507.] doi: 10.3866/PKU.WHXB20040513
(7) Xing, J. C.; Bian, J. J.; Yang, J. H.; Huang, F. Q. Journal ofInorganic Materials 2007, 22 (5), 927. [邢精成, 卞建江, 杨建华, 黄富强. 无机材料学报, 2007, 22 (5), 927.]
(8) Zou, Z. G.; Ye, J. H.; Kazuhiro, S.; Hironori, A. Nature 2001,414, 625. doi: 10.1038/414625a
(9) Shi, R.;Wang, Y. J.; Li, D.; Xu, J.; Zhu, Y. F. Applied CatalysisB: Environmental 2010, 100, 173.
(10) Li, D.; Shi, R.; Pan, C. S.; Zhu, Y. F.; Zhao, H. J.CrystEngComm 2011, 13, 4695.
(11) Zhang, S. C.; Zhang, C.; Man, Y.; Zhu, Y. F. Journal of SolidState Chemistry 2006, 179 (1), 62. doi: 10.1016/j.jssc.2005.09.041
(12) Fu, X. Z.;Walter, A. Z.; Yang, Q.; Marc, A. A. Joural ofCatalysis 1997, 168 (2), 482. doi: 10.1006/jcat.1997.1660
(13) Su,W. Y.; Fu, X. Z.;Wei, K. M. Acta Phys. -Chim. Sin. 2001, 17 (1), 28. [苏文悦, 付贤智, 魏可镁. 物理化学学报, 2001, 17 (1), 28.] doi: 10.3866/PKU.WHXB20010106
(14) La´szlo´, K.; Szilvia, P.; Imre, B.; Imre, D. Chem. Mater. 2007,19 (19), 4811.
(15) Bi, Y. P.; Ouyang, S. X.; Naoto, U.; Cao, J. Y.; Ye, J. H. J. Am.Chem. Soc. 2011, 133 (17), 6490.
(16) Ji, F.; Li, C. L.; Zhang, J. H. ACS Appl. Mater. Interfaces 2010,2 (6), 1674. doi: 10.1021/am100189m
(17) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121,11459. doi: 10.1021/ja992541y
(18) Lin, X. P.; Huang, T.; Huang, F. Q.;Wang,W. D.; Shi, J. L. J.Phys. Chem. B 2006, 110 (48), 24629.
(19) Lin, X.; Lu, P.; Guan, Q. F.; Li, H. B.; Li, H. J.; Cai, J.; Zou, Y.Acta Phys. -Chim. Sin. 2012, 28 (8), 1978. [林雪, 吕鹏,关庆丰, 李海波, 李洪吉, 蔡杰, 邹阳. 物理化学学报,2012, 28 (8), 1978.] doi: 10.3866/PKU.WHXB201205172
(20) Dunkle, S. S.; Suslick, K. S. J. Phys. Chem. C 2009, 113 (24),10341. doi: 10.1021/jp903163u
(21) Fu, H. B.; Pan, C. S.; Zhang, L.W.; Zhu, Y. F. MaterialsResearch Bulletin 2007, 42 (4), 696. doi: 10.1016/j.materresbull.2006.07.017
(22) Zhao, X.; Xu, T.; Yao,W.; Zhu, Y. F. Applied Surface Science2009, 255, 8036. doi: 10.1016/j.apsusc.2009.05.010
(23) Shi, R.; Lin, J.;Wang, Y. J.; Xu, J.; Zhu, Y. F. J. Phys. Chem. C2010, 114, 6472.
(24) Pan, C. S.; Zhu, Y. F. Environ. Sci. Technol. 2010, 44, 5570. doi: 10.1021/es101223n
(25) Pan, C. S.; Zhu, Y. F. J. Mater. Chem. 2011, 21, 4235. doi: 10.1039/c0jm03655b
(26) Liu, Y. F.; Ma, X. G.; Yi, X.; Zhu, Y. F. Acta Phys. -Chim. Sin.2012, 28 (3), 654. [刘艳芳,马新国, 易欣, 朱永法. 物理化学学报, 2012, 28 (3), 654.] doi: 10.3866/PKU.WHXB201112232
(27) Lumetta, G. J.; Mcnamara, B. K.; Buck, E. C.; Fiskum, A. K.;Snow, L. A. Environ. Sci. Technol. 2009, 43 (20), 7843. doi: 10.1021/es9013745
(28) Pan, C. S.; Xu, J.; Chen, Y.; Zhu, Y. F. Applied Catalysis B:Environmental 2012, 115-116, 314.
(29) Pan, C. S.; Xu, J.;Wang, Y. J.; Li, D.; Zhu, Y. F. Adv. Funct.Mater. 2012, 22, 1518. doi: 10.1002/adfm.v22.7
(30) Rose, C. L.; Mooney, S. Zeitschrift für Kristallographie, Bd.1962, 117, 371. doi: 10.1524/zkri.1962.117.5-6.371
(31) Baltasar, R.; Sebastian, B.; Miguel, A. G. A.; Juan, E. I. Inorg.Chem. 1994, 33, 1869. doi: 10.1021/ic00087a023
(32) Li, G. F.; Ding, Y.; Zhang, Y. F.; Lu, Z.; Sun, H. Z.; Chen, R.Journal of Colloid and Interface Science 2011, 363, 497. doi: 10.1016/j.jcis.2011.07.090
(33) Geng, J.; Hou,W. H.; Lv, Y. N.; Zhu, J. J.; Chen, H. Y. Inorg.Chem. 2005, 44, 8503. doi: 10.1021/ic050674g
(34) Pan, C. S.; Li, D.; Ma, X. G.; Chen, Y.; Zhu, Y. F. Catal. Sci.Technol. 2011, 1, 1399. doi: 10.1039/c1cy00261a
(35) Zhang, D. B.;Wang, S. J.; Cheng, K.; Dai, S. X.; Hu, B. B.;Han, X.; Shi, Q.; Du, Z. L. ACS Appl. Mater. Interfaces 2012, 4,2969. doi: 10.1021/am3003473
(36) Tsutomu, S.; Seiji,W.; Masanobu, I. Cryst. Growth Des. 2011,11, 5533. doi: 10.1021/cg2011106
(37) Raj, K. J. A.; Viswanathan, B. India Journal of Chemistry 2009,48, 1378.

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[3] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[4] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[5] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[6] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[7] XU Han, TONG Ye-Xiang, LI Gao-Ren. Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2171-2184.
[8] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[9] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[10] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[11] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[12] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.
[13] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. Chim. Sin., 2016, 32(3): 737-744.
[14] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.
[15] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.