Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (03): 546-552    DOI: 10.3866/PKU.WHXB201301081
Preparation and Electrochemical Performance of Carbon Nanotubes/ Graphene Oxide/Sulfur Complex Cathode Material
XU Gui-Yin, DING Bing, NIE Ping, LUO Hong-Jun, ZHANG Xiao-Gang
College of Material Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
Download:   PDF(10803KB) Export: BibTeX | EndNote (RIS)      


Three-dimensional (3D) hierarchical CNTs/GO/S ternary composites were prepared by solution-based reaction-deposition, using graphene oxide (GO) and carbon nanotubes (CNTs) as precursors. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) indicated a uniform S coating on CNTs/GO which arose because of the large GO specific surface area. CNTs interspersed between the GO layers to form a 3D porous structure. Constant current charge-discharge tests showed that CNTs/GO/S composites had a high discharge capacity and excellent cycling stability, and delivered a high initial discharge capacity of 904 mAh·g-1 at 1C rate. After 50 cycles at the same rate, the reversible capacity remained at 578 mAh·g-1.

Key wordsLithium-sulfur battery      Graphene oxide      Carbon nanotube      Composite      Cycling performance     
Received: 08 October 2012      Published: 08 January 2013
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (21173120), Natural Science Foundation of Jiangsu Province, China (BK2011030), and Funding of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics, China (kfjj120209).

Cite this article:

XU Gui-Yin, DING Bing, NIE Ping, LUO Hong-Jun, ZHANG Xiao-Gang. Preparation and Electrochemical Performance of Carbon Nanotubes/ Graphene Oxide/Sulfur Complex Cathode Material. Acta Phys. Chim. Sin., 2013, 29(03): 546-552.

URL:     OR

(1) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.M. Nat. Mater. 2012, 11 (1), 19. doi: 10.1038/nmat3191
(2) Yao, Z. D.;Wei,W.;Wang, J. L.; Yang, J.; Nuli, Y. N. ActaPhys. -Chim. Sin. 2011, 27 (5), 1005. [姚真东, 魏巍, 王久林, 杨军, 努丽燕娜. 物理化学学报, 2011, 27 (5), 1005.]doi: 10.3866/PKU.WHXB20110345
(3) Xiao, L. F.; Cao, Y. L.; Xiao, J.; Schwenzer, B.; Engelhard, M.H.; Saraf, L. V.; Nie, Z. M.; Exarhos, G. J.; Liu, J. Adv. Mater.2012, 24 (9), 1176. doi: 10.1002/adma.201103392
(4) Ai, X. P.; Cao, Y. L.; Yang, H. X. J. Electrochemistry 2012, 18 (3), 224. [艾新平, 曹余良, 杨汉西. 电化学, 2012, 18 (3),224.]
(5) Ji, X. L.; Nazar, L. F. J. Mater. Chem. 2010, 20 (44), 9821. doi: 10.1039/b925751a
(6) Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C. S.;Affinito, J. J. Electrochem. Soc. 2009, 156, A694. doi: 10.1149/1.3148721
(7) Mikhaylik, Y. V.; Akridge, J. R. J. Electrochem. Soc. 2004, 151 (11), A1969. doi: 10.1149/1.1806394
(8) Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y.K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G.Angew. Chem. Int. Edit. 2012, 51 (40), 9994. doi: 10.1002/anie.201201429
(9) Wang,W. K.;Wang, A. B.; Cao, G. P.; Yang, Y. S. ActaPhys. -Chim. Sin. 2004, 20 (12), 1440. [王维坤, 王安邦, 曹高萍, 杨裕生. 物理化学学报, 2004, 20 (12), 1440.] doi: 10.3866/PKU.WHXB20041208
(10) Wang, C.; Chen, J. J.; Shi, Y. N.; Zheng, M. S.; Dong, Q. F.Electrochim. Acta 2010, 55 (23), 7010. doi: 10.1016/j.electacta.2010.06.019
(11) Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D.Adv. Mater. 2011, 23 (47), 5641. doi: 10.1002/adma.v23.47
(12) Yin, L. C.;Wang, J. L.; Lin, F. J.; Yang, J.; Nuli, Y. N. EnergyEnviron. Sci. 2012, 5 (5), 6966. doi: 10.1039/c2ee03495f
(13) Rao, M. M.; Li,W. S.; Cairns, E. J. Electrochem. Commun.2012, 17, 1. doi: 10.1016/j.elecom.2011.12.022
(14) Ji, X. L.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8 (6), 500.doi: 10.1038/nmat2460
(15) Wang, J. L.; Yang, J.; Xie, J. Y.; Xu, N. X.; Li, Y. Electrochem.Commun. 2002, 4 (6), 499.
(16) Ji, L.W.; Rao, M. M.; Aloni, S.;Wang, L.; Cairns, E. J.; Zhang,Y. G. Energy Environ. Sci. 2011, 4 (12), 5053. doi: 10.1039/clee02256c
(17) Wang, D.W.; Zhou, G. M.; Li, F.;Wu, K. H.; Lu, G. Q.; Cheng,H. M.; Gentle, I. R. Phys. Chem. Chem. Phys. 2012, 14 (24),8703. doi: 10.1039/c2cp40808b
(18) Ji, L.W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan,W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. J. Am. Chem. Soc.2011, 133 (46), 18522. doi: 10.1021/ja206955k
(19) Buglione, L.; Pumera, M. Electrochem. Commun. 2012, 17, 45.doi: 10.1016/j.elecom.2012.01.018
(20) Huang, Z. D.; Zhang, B.; Oh, S.W.; Zheng, Q. B.; Lin, X. Y.;Yousefi, N.; Kim, J. K. J. Mater. Chem. 2012, 22 (8), 3591.doi: 10.1039/c2jm15048d
(21) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. doi: 10.1021/ja01539a017
(22) Che, Q.; Zhang, F.; Zhang, X. G.; Lu, X. J.; Ding, B.; Zhu, J. J.Acta Phys. -Chim. Sin. 2012, 28 (4), 837. [车倩, 张方,张校刚, 卢向军, 丁兵, 朱佳佳. 物理化学学报, 2012, 28 (4),837.]doi: 10.3866/PKU.WHXB201202074
(23) Zhang, L.; Ji, L.W.; Glans, P. A.; Zhang, Y. G.; Zhu, J. F.; Guo,J. H. Phys. Chem. Chem. Phys. 2012, 14 (39), 13670. doi: 10.1039/c2cp42866k
(24) Cheon, S. E.; Choi, S. S.; Han, J. S.; Choi, Y. S.; Jung, B. H.;Lim, H. S. J. Electrochem. Soc. 2004, 151, A2067. doi: 10.1149/1.1815153
(25) Chen, J. J.; Zhang, Q.; Shi, Y. N.; Qin, L. L.; Cao, Y.; Zheng, M.S.; Dong, Q. F. Phys. Chem. Chem. Phys. 2012, 14 (16), 5376.doi: 10.1039/c2cp40141j
(26) Wang, Y. X.; Huang, L.; Sun, L. C.; Xie, S. Y.; Xu, G. L.; Chen,S. R.; Xu, Y. F.; Li, J. T.; Chou, S. L.; Dou, S. X.; Sun, S. G. J.Mater. Chem. 2012, 22 (11), 4744. doi: 10.1039/c2jm15041g

[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[2] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[3] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[4] LI Guo-Min, ZHU Bao-Shun, LIANG Li-Ping, TIAN Yu-Ming, Lü Bao-Liang, WANG Lian-Cheng. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1715-1720.
[5] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[6] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[7] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[8] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[9] LI Jun-Tao, WU Jiao-Hong, ZHANG Tao, HUANG Ling. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Phys. Chim. Sin., 2017, 33(5): 968-975.
[10] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[11] FANG Min, WANG Zong-Yuan, LIU Chang-Jun. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(2): 435-440.
[12] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.
[13] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[14] LIU Shuai, YAO Lu, ZHANG Qin, LI Lu-Lu, HU Nan-Tao, WEI Liang-Ming, WEI Hao. Advances in High-Performance Lithium-Sulfur Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2339-2358.
[15] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.