Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (05): 1055-1062    DOI: 10.3866/PKU.WHXB201301181
CATALYSIS AND SURFACE SCIENCE     
Kinetics Study of CO Oxidation Reaction over Pt/TiO2 Catalysts
LI Na, CHEN Qiu-Yan, LUO Meng-Fei, LU Ji-Qing
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang Province, P. R. China
Download:   PDF(767KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A series of Pt/TiO2 catalysts were prepared using a deposition-precipitation method and calcined at different temperatures to obtain various Pt particle sizes. The catalysts were tested for catalytic CO oxidation and the kinetics of the reaction was studied. The results showed that the Pt particle size increased with calcination temperature, and that their reactivity for CO oxidation first increased and then decreased with increasing calcination temperature, with the catalyst calcined at 400℃ possessing the highest reactivity. The kinetic investigation revealed that the reaction rate could be described by r=5.4×10-7p CO0.17pO20.36, suggesting that the reaction followed a Langmuir-Hinshelwood mechanism. Meanwhile, O2 chemisorption and infrared (IR) spectroscopy of CO chemisorption on the catalysts were conducted to reveal the relationship between the catalyst structure and its catalytic behavior. It was found that the amount of O2 chemisorption and the intensity of CO chemisorption by IR on the catalysts first increased and then decreased with increasing calcination temperature, which was consistent with the catalytic results and the kinetic equation. This could explain the catalytic behaviors of the catalysts. For example, the highest amounts of chemisorbed O2 and CO were obtained over the Pt/TiO2 calcined at 400℃, which resulted in the highest reactivity. Such an enhancement in reactivity was probably due to the strong interaction between Pt and TiO2 induced by the calcination process.



Key wordsCO oxidation      Pt/TiO2      Metal-support interaction      Reaction kinetics      Chemisorption     
Received: 31 October 2012      Published: 18 January 2013
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21173195).

Cite this article:

LI Na, CHEN Qiu-Yan, LUO Meng-Fei, LU Ji-Qing. Kinetics Study of CO Oxidation Reaction over Pt/TiO2 Catalysts. Acta Phys. Chim. Sin., 2013, 29(05): 1055-1062.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201301181     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I05/1055

(1) Schryer, D. R.; Upchurch, B. T.; Sidney, B. D.; Brown, K. G.;Hoflund, G. B.; Herz, R. K. J. Catal. 1991, 130, 314. doi: 10.1016/0021-9517(91)90114-J
(2) Yuan, Y. Z.; Kozlova, A. P.; Asakura, K.;Wan, H. L.; Tsai, K.;Iwasawa, Y. J. Catal. 1997, 170, 191. doi: 10.1006/jcat.1997.1752
(3) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett.1987, 16, 405.
(4) McClure, S. M.; Goodman, D.W. Chem. Phys. Lett. 2009, 469,1. doi: 10.1016/j.cplett.2008.12.066
(5) Fernández-García, M.; Martínez-Arias, A.; Salamanca, L. N.;Coronado, J. M.; Anderson, J. A.; Conesa, J. C.; Soria, J.J. Catal. 1999, 187, 474. doi: 10.1006/jcat.1999.2624
(6) Xiao, X. Y.; Lu, J. Q.; Su, X.W.; Guo, M.; Luo, M. F. ActaPhys. -Chim. Sin. 2009, 25, 561. [肖小燕, 鲁继青, 苏孝文,郭明, 罗孟飞. 物理化学学报, 2009, 25, 561.] doi: 10.3866/PKU.WHXB20090327
(7) Zhu, P. F.; Li, J.; Zuo, S. F.; Zhou, R. X. Appl. Surf. Sci. 2008,255, 2903. doi: 10.1016/j.apsusc.2008.08.033
(8) Yang, Z. Q.; Mao, D. S.; Guo, Q. S.; Gu, L. Acta Phys. -Chim.Sin. 2010, 26, 3278. [杨志强, 毛东森, 郭强胜, 顾蕾. 物理化学学报, 2010, 26, 3278.] doi: 10.3866/PKU.WHXB20101210
(9) Liu, X. S.; Lu, J. Q.; Qian, K.; Huang,W. X.; Luo, M. F.J. Rare. Earth 2009, 27, 418. doi: 10.1016/S1002-0721(08)60263-X
(10) Gardner, S. D.; Hofltmd, G. B.; Schryer, D. R.; Schryer, J.;Upchurch, B. T.; Kielin, E. J. Langmuir 1991, 7, 2135. doi: 10.1021/la00058a027
(11) Hoflund, G. B.; Gardner, S. D.; Schryer, D. R.; Upchurch, B. T.;Kielin, E. J. Appl. Catal. B 1995, 6, 117. doi: 10.1016/0926-3373(95)00010-0
(12) Gardner, S. D.; Hoflund, G. B.; Upchureh, B. T.; Kielin, E. J.;Schryer, J. J. Catal. 1991, 129, 114. doi: 10.1016/0021-9517(91)90015-V
(13) Stark, D. S.; Crccker, A.; Steward, G. J. J. Phys. E: Sci. Instrum.1983, 16, 158. doi: 10.1088/0022-3735/16/2/012
(14) Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal.1989, 115, 301. doi: 10.1016/0021-9517(89)90034-1
(15) Tauster, S. J.; Fung, S. C. J. Catal. 1978, 29, 55.
(16) Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc.1978, 170, 100.
(17) Choi, Y. M.; Abernathy, H.; Chen, H. T.; Lin, M. C.; Liu, M. L.ChemPhysChem 2006, 7, 1957.
(18) Alexeev, 1. O. S.; Chin, S. Y.; Engelhard, M. H.; Ortiz-Soto, L.;Amiridis, M. D. J. Phys. Chem. B 2005, 109, 23430. doi: 10.1021/jp054888v
(19) Baker, R. T. K.; Tauster, S. J. Strong Metal Support Interactions;Dumesic, J. A. Ed.; American Chemical Society:Washington D.C. 1986; p 238.
(20) Bond, G. C.; Thompson, D. T. Gold Bull. 2000, 33, 41. doi: 10.1007/BF03216579
(21) Sheintuch, M.; Schmi, J.; Lecthman, Y.; Yahav, G. Appl. Catal.1989, 49, 55. doi: 10.1016/S0166-9834(00)81421-9
(22) Boulahouache, A.; Kous, G.; Lintz, H. G.; Schulz, P. Appl.Catal. A 1992, 91, 115.
(23) Liu,W.; Flytzani-Stephanopoulos, M. J. Catal. 1995, 153, 317.
(24) Jia, A. P.; Hu, G. S.; Meng, L.; Xie, Y. L.; Lu, J. Q.; Luo, M. F.J. Catal. 2012, 289, 199. doi: 10.1016/j.jcat.2012.02.010
(25) Fogler, H. S. Elements of Chemical Reaction Engineering, 4thed.; Pearson Education Inc.: New Jersey, 2006; pp 839-842.
(26) Silvestre-Albero, J.; Serrano-Ruiz, J. C.; Sepúlveda-Escribano,A.; Rodríguez-Reinoso, F. Appl. Catal. A 2005, 292, 244. doi: 10.1016/j.apcata.2005.06.005
(27) Ruppert, A. M.; Paryjczak, T. Appl. Catal. A 2007, 320, 80. doi: 10.1016/j.apcata.2006.12.019
(28) Silvestre-Albero, J.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F.; Anderson, A. J. J. Catal. 2004, 223, 179. doi: 10.1016/j.jcat.2004.01.019
(29) Panagiotopoulou, P.; Christodoulakis, A.; Kondarides, D. I.;Boghosian, S. J. Catal. 2006, 240, 114. doi: 10.1016/j.jcat.2006.03.012
(30) Carlsson, P. A.; Österlund, L.; Thormählen, P.; Palmqvist, A.;Fridell, E.; Jansson, J.; Skoglundh, M. J. Catal. 2004, 226, 422.doi: 10.1016/j.jcat.2004.06.009

[1] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1462-1473.
[2] CHEN Mingshu. Toward Understanding the Nature of the Active Sites and Structure-Activity Relationships of Heterogeneous Catalysts by Model Catalysis Studies[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2424-2437.
[3] GU Yong-Bing, CAI Qiu-Xia, CHEN Xian-Lang, ZHUANG Zhen-Zhan, ZHOU Hu, ZHUANG Gui-Lin, ZHONG Xing, MEI Dong-Hai, WANG Jian-Guo. Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al2O3/Au(111) Catalysts[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1674-1680.
[4] JIA Yong-Chang, WANG Shu-Yuan, MENG Lian, LU Ji-Qing, LUO Meng-Fei. Effects of Zr Addition on CO and CH4 Catalytic Oxidation over PdO/PdO/Ce1-xPdxO2-δ Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1801-1809.
[5] TANG Huan-Feng, HUANG Zai-Yin, XIAO Ming, LIANG Min, CHEN Li-Ying. An Investigation into the Reaction Kinetics of Cubic Nano-Cu2O in Theory and Experiment[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2891-2897.
[6] HUANG Wei-Xin, QIAN Kun, WU Zong-Fang, CHEN Shi-Long. Structure-Sensitivity of Au Catalysis[J]. Acta Phys. Chim. Sin., 2016, 32(1): 48-60.
[7] LI Xiao-Kun, MA Dong-Dong, ZHENG Yan-Ping, ZHANG Hong, DING Ding, CHEN Ming-Shu, WAN Hui-Lin. Performance of CO Oxidation over Highly Dispersed Gold Catalyst on TiOx/SiO2 Composite Supports[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1753-1760.
[8] LÜ Yong-Ge, LI Yong, TA Na, SHEN Wen-Jie. Morphology-Controlled Synthesis of Co3O4 Nanocubes and Their Catalytic Performance in CO Oxidation[J]. Acta Phys. Chim. Sin., 2014, 30(2): 382-388.
[9] LIANG Qian, ZHAO Zhen, LIU Jian, WEI Yue-Chang, JIANG Gui-Yuan, DUAN Ai-Jun. Pd Nanoparticles Deposited on Metal-Organic Framework of MIL-53(Al):an Active Catalyst for CO Oxidation[J]. Acta Phys. Chim. Sin., 2014, 30(1): 129-134.
[10] SUN Jing-Fang, GE Cheng-Yan, YAO Xiao-Jiang, CAO Yuan, ZHANG Lei, TANG Chang-Jin, DONG Lin. Preparation of NiO/CeO2 Catalysts by Solid State Impregnation and Their Application in CO Oxidation[J]. Acta Phys. Chim. Sin., 2013, 29(11): 2451-2458.
[11] LI Jin-Bing, JIANG Zhi-Quan, HUANG Wei-Xin . Adsorption and Decomposition of NO2 on Ag/Pt(110) Bimetallic Surface[J]. Acta Phys. Chim. Sin., 2013, 29(04): 837-842.
[12] WANG Fang, WANG Cai-Hong, LI Da-Zhi. Novel Method of Controlling Formation of Hot-Spot over Gold Catalysts for CO Oxidation[J]. Acta Phys. Chim. Sin., 2012, 28(06): 1455-1460.
[13] YAO Er-Gang, ZHAO Feng-Qi, GAO Hong-Xu, XU Si-Yu, HU Rong-Zu, HAO Hai-Xia, AN Ting, PEI Qing, XIAO Li-Bai. Thermal Behavior and Non-Isothermal Decomposition Reaction Kinetics of Aluminum Nanopowders Coated with an Oleic Acid/Hexogen Composite System[J]. Acta Phys. Chim. Sin., 2012, 28(04): 781-786.
[14] DONG Hua-Qing, PAN Xi, XIE Qin, MENG Qiang-Qiang, GAO Jian-Rong, WANG Jian-Guo. CO Adsorption and Oxidation on Metal-Doped TiO2 Nanotube Arrays[J]. Acta Phys. Chim. Sin., 2012, 28(01): 44-50.
[15] YANG Zhi-Qiang, MAO Dong-Sen, WU Ren-Chun, YU Jun, WANG Qian. Preparation of CuO-Ce0.6Zr0.4O2 by Microwave Heating Decomposition and Its Catalytic Property for CO Oxidation[J]. Acta Phys. Chim. Sin., 2011, 27(05): 1163-1168.