Please wait a minute...
Acta Phys. -Chim. Sin.
BIOPHYSICAL CHEMISTRY     
Molecular Dynamics Simulations of the Unbinding of Phenylsulfonamide from Carbonic Anhydrase II
SUN Wei-Qi1,3, ZHANG Ji-Long2, ZHENG Qing-Chuan2, SUN Zhi-Wei1,4, ZHANG Hong-Xing2
1 School of Public Health, Jilin University, Changchun 130021, P. R. China;
2 State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China;
3 School of Public Health, Beihua University, Jilin 132013, P. R. China;
4 School of Public Health and Family Medicine, Capital Medical University, Beijing 100069, P. R. China
Download:   PDF(1398KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Molecular dynamics (MD) simulations and free energy calculations were integrated to investigate substrate-enzyme dynamic interactions during the unbinding of phenylsulfonamide from carbonic anhydrase II (CA II). The potential of mean force (PMF) along the unbinding pathway shows that a special ligand-binding state exists, and the electrostatic interaction dominates the ligand?s binding with CA II. The analysis of trajectories reveals that, apart from the zinc ion, the key residues in the unbinding pathway, Leu198, Thr199, and Thr200, prevent the substrate?s unbinding from the enzyme by hydrogen bonding with the sulfanilamide group of the substrate. The present results are of direct significance for the in-depth understanding of the sulfonamide-CA II binding process and related drug design.



Key wordsMolecular dynamics simulation      Free energy      Phenylsulfonamide      Carbonic anhydrase II      Substrate’s binding     
Received: 08 November 2012      Published: 18 January 2013
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (21273095, 20903045, 21203072), Specialized Research Fund for the Doctoral Program of Higher Education, China (20070183046), and Specialized Fund for the Basic Research of Jilin University, China (201003044).

Cite this article:

SUN Wei-Qi, ZHANG Ji-Long, ZHENG Qing-Chuan, SUN Zhi-Wei, ZHANG Hong-Xing. Molecular Dynamics Simulations of the Unbinding of Phenylsulfonamide from Carbonic Anhydrase II. Acta Phys. -Chim. Sin., 2013, 29(04): 843-848.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201301183     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I04/843

(1) Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin,I.; Gudiksen, K. L.;Weibel, D. B.; Whitesides, G. M. Chem.Rev. 2008, 108, 946. doi: 10.1021/cr050262p
(2) Sanyal, G.; Maren, T. H. J. Biol. Chem. 1981, 256, 608.
(3) Stabenau, E. K.; Heming, T. Comp. Biochem. Physiol. Part A:Mol. Integr. Physiol. 2003, 136, 271. doi: 10.1016/S1095-6433(03)00177-6
(4) Shah, G. N.; Ulmasov, B.;Waheed, A.; Becker, T.; Makani, S.;Svichar, N.; Chesler, M.; Sly,W. S. Proc. Natl. Acad. Sci. U. S.A. 2005, 102, 16771. doi: 10.1073/pnas.0508449102
(5) Gay, C. V.;Weber, J. A. Crit. Rev. Eukaryotic Gene Expression2000, 10, 213.
(6) Henry, R. P. Ann. Rev. Physiol. 1996, 58, 523. doi: 10.1146/annurev.ph.58.030196.002515
(7) Svastova, E.; Hulikova, A.; Rafajova, M.; Zatovicova, M.;Gibadulinova, A.; Casini, A.; Cecchi, A.; Scozzafava, A.;Supuran, C. T.; Pastorek, J.; Pastorekova, S. FEBS Lett. 2004,577, 439. doi: 10.1016/j.febslet.2004.10.043
(8) Sun, M. K.; Alkon, D. L. Trends Pharm. Sci. 2002, 23, 83. doi: 10.1016/S0165-6147(02)01899-0
(9) Scoozzafava, A.; Mastrolorenzo, A; Supuran, C. T. Expert Opin.Ther. Pat. 2006, 16, 1627. doi: 10.1517/etp.2006.16.issue-12
(10) Pastorekova, S.; Parkkila, S.; Pastorek, J.; Supuran, C. T.J. Enzyme Inhib. Med. Chem. 2004, 19, 199. doi: 10.1080/14756360410001689540
(11) Khalifah, R. G. J. Biol. Chem. 1971, 246, 2561.
(12) Wistrand, P. J.; Schenholm, M.; Lonnerholm, G. Invest.Ophthalmol. Vision Sci. 1986, 27, 419.
(13) Alward,W. L. M. N. Engl. J. Med. 1998, 339, 1298. doi: 10.1056/NEJM199810293391808
(14) Borthwick, K. J.; Kandemir, N.; Topaloglu, R.; Kornak, U.;Bakkaloglu, A.; Yordam, N.; Ozen, S.; Mocan, H.; Shah, G. N.;Sly,W. S.; Karet, F. E. J. Med. Genet. 2003, 40, 115. doi: 10.1136/jmg.40.2.115
(15) Güzel, Ö.; Innocenti, A.; Scozzafava, A.; Salman, A.; Supuran,C. T. Bioorg. Med. Chem. Lett. 2009, 19, 3170. doi: 10.1016/j.bmcl.2009.04.123
(16) Zhang, J. L.; Zheng, Q. C.; Li, Z. Q.; Zhang, H. X. PLoS ONE2012, 7, e39546.
(17) Dong, X. Y.; Du,W. J.; Liu, F. F. Acta Phys. -Chim Sin. 2012,28, 2735. [董晓燕, 都文婕, 刘夫锋. 物理化学学报, 2012,28, 2735.] doi: 10.3866/PKU.WHXB201207162
(18) Zhao, Y. S.; Zheng, Q. C.; Zhang, H. X.; Chu, H. Y.; Sun, C. C.Acta Phys. -Chim. Sin. 2009, 25, 417. [赵勇山, 郑清川, 张红星, 楚慧郢, 孙家钟. 物理化学学报, 2009, 25, 417.] doi: 10.3866/PKU.WHXB20090304
(19) Zhang, J. L.; Zheng, Q. C.; Zhang, H. X. Comput. Biol. Chem.2011, 35, 50. doi: 10.1016/j.compbiolchem.2011.01.001
(20) Humphrey,W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14,33. doi: 10.1016/0263-7855(96)00018-5
(21) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,10089. doi: 10.1063/1.464397
(22) Hoover,W. G. Phys. Rev. A 1985, 31, 1695. doi: 10.1103/PhysRevA.31.1695
(23) Hénin, J.; Chipot, C. J. Chem. Phys. 2004, 121, 2904. doi: 10.1063/1.1773132
(24) Zhang, J. L.; Zheng, Q. C.; Zhang, H. X. J. Phys. Chem. B 2010,114, 7383. doi: 10.1021/jp9113078
(25) Zhang, J. L.; Zheng, Q. C.; Li, Z. Q.; Zhang, H. X. PLoS ONE2013, 8, e53811.
(26) Zhang, J. L.; Zheng, Q. C.; Zhang, H. X. Chem. Phys. Lett.2010, 484, 338. doi: 10.1016/j.cplett.2009.12.022

[1] Wenqiong CHEN,Yongji GUAN,Xiaoping ZHANG,Youquan DENG. Influence of External Electric Field on Vibrational Spectrum of Imidazolium-Based Ionic Liquids Probed by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 912-919.
[2] Jie WEI,Hexin DONG,Xia CHEN,Yuxuan YANG,Dawei FANG,Wei GUAN,Jiazhen YANG. Physicochemical Properties of 1-Methoxyethyl-3-Methylimidazolium Glycine[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 927-932.
[3] Noriyuki YOSHII,Mika KOMORI,Shinji KAWADA,Hiroaki TAKABAYASHI,Kazushi FUJIMOTO,Susumu OKAZAKI. Free Energy Change of Micelle Formation for Sodium Dodecyl Sulfate from a Dispersed State in Solution to Complete Micelles along Its Aggregation Pathways Evaluated by Chemical Species Model Combined with Molecular Dynamics Calculations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1163-1170.
[4] Fu-Feng LIU,Yu-Bo FAN,Zhen LIU,Shu BAI. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[5] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[6] . Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1354-1365.
[7] . Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1140-1148.
[8] Yi-Jian CHEN,Hong-Tao ZHOU,Ji-Jiang GE,Gui-Ying XU. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1214-1222.
[9] Yuan ZHAO,Ze-Xing CAO. Global Simulations of Enzymatic Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 691-708.
[10] Ying-Chun DENG,Qing LIU,Qiang HUANG. Molecular Docking of Human-Like Receptor to Hemagglutinins of Avian Influenza A Viruses[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 633-641.
[11] Qing-Kang LIU,Wen-Ping SONG,Qi-Tao HUANG,Guang-Yu ZHANG,Zhen-Xiu HOU. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2472-2479.
[12] Yi-Ran SUN,Fei YU,Jie MA. Research Progress of Nanoconfined Water[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2173-2183.
[13] Shao-Gui WU,Dan FENG. Free Energy Calculation for Base Pair Dissociation in a DNA Duplex[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1282-1288.
[14] Zi-Yu LIU,Qi LIAO,Zhi-Qiang JIN,Lei ZHANG,Lu ZHANG. Effect of Electrolytes on the Interfacial Behavior of Nonionic-Anionic Surfactant Solutions Using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1168-1174.
[15] Jing TONG,Teng-Fei CHEN,Duo ZHANG,Lin-Fu WANG,Jian TONG,Jia-Zhen YANG. Molar Surface Gibbs Free Energy of the Aqueous Solution of the Ionic Liquid [C2mim][OAc][J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1161-1167.