Please wait a minute...
Acta Phys. Chim. Sin.
CATALYSIS AND SURFACE SCIENCE     
Elimination of Bisphenol A from Water via Graphene Oxide Adsorption
XU Jing1, ZHU Yong-Fa1,2
1 Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China;
2 Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, P.R. China
Download:   PDF(611KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

The elimination of bisphenol A (BPA) from aqueous solution by adsorption on graphene oxide (GO) was investigated. The maximum adsorption capacity (qm) of GO for BPA estimated from the Langmuir isotherm was 87.80 mg·g-1 at 25℃. The required contact time to reach adsorption equilibrium was about 30 min, which was much shorter than that of activated carbon. The adsorption kinetics and isotherm data fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm, respectively. Neutral pH and low solution temperature were favorable for adsorption, whereas the presence of NaCl in the solution was unfavorable. The GO had good recyclability and could be reused several times with a slight decline in adsorption ability. Both hydrogen bonding and π-π interaction were thought to be responsible for the adsorption of BPA on GO. The excellent adsorption capacity and high adsorption rate of GO result from its sheet-like structure and the abundant oxygen-containing groups on its surface. Although qm of GO for BPA is lower than that of graphene, GO has the benefits of large scale production, a hydrophilic surface with plenty of oxygen-containing groups, and good dispersion in water. Therefore, GO can be regarded as a good potential adsorbent for water treatment.



Key wordsAdsorption      Graphene oxide      Bisphenol A      Endocrine-disrupting chemicals      Water treatment     
Received: 31 October 2012      Published: 21 January 2013
MSC2000:  O647  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2013CB632403), National High Technology Research and Development Program of China (863) (2012AA062701), Special Project on Innovative Method from the Ministry of Science and Technology of China (2009IM030500), and Atmospheric Environment Monitoring & Pollution Control Program of Jiangsu Province, China (AEMPC201103).

Cite this article:

XU Jing, ZHU Yong-Fa. Elimination of Bisphenol A from Water via Graphene Oxide Adsorption. Acta Phys. Chim. Sin., 2013, 29(04): 829-836.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201301211     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I04/829

(1) Snyder, S. A.;Westerhoff, P.; Yoon, Y.; Sedlak, D. L. Environ.Sci. Technol. 2003, 20, 449.
(2) Chang, H. S.; Choo, K. H.; Lee, B.; Choi, S. J. J. Hazard.Mater. 2009, 172, 1. doi: 10.1016/j.jhazmat.2009.06.135
(3) Kang, J. H.; Kondo, F.; Katayama, Y. Toxicology 2006, 226, 79.doi: 10.1016/j.tox.2006.06.009
(4) Staples, C. A.; Dorn, P. B.; Klecka, G. M.; O'Block, S. T.;Harris, L. R. Chemosphere 1998, 36, 2149. doi: 10.1016/S0045-6535(97)10133-3
(5) Staples, C. A.; Dorn, P. B.; Klecka, G. M.; O'Block, S. T.;Branson, D. R.; Harris, L. R. Chemosphere 2000, 40, 521. doi: 10.1016/S0045-6535(99)00288-X
(6) Belfroid, A.; van Velzen, M.; van der Horst, B.; Vethaak, D.Chemosphere 2002, 49, 97. doi: 10.1016/S0045-6535(02)00157-1
(7) Pan, B.; Lin, D. H.; Mashayekhi, H.; Xing, B. S. Environ. Sci.Technol. 2009, 43, 5480.
(8) Liu, G. F.; Ma, J.; Li, X. C.; Qin, Q. D. J. Hazard. Mater. 2009,164, 1275. doi: 10.1016/j.jhazmat.2008.09.038
(9) Dong, Y.;Wu, D. Y.; Chen, X. C.; Lin, Y. J. Colloid InterfaceSci. 2010, 348, 585. doi: 10.1016/j.jcis.2010.04.074
(10) Kim, Y. H.; Lee, B.; Choo, K. H.; Choi, S. J. MicroporousMesoporous Mat. 2011, 138, 184. doi: 10.1016/j.micromeso.2010.09.007
(11) El-Naas, M. H.; Al-Muhtaseb, S. A.; Makhlouf, S. J. Hazard.Mater. 2009, 164, 720. doi: 10.1016/j.jhazmat.2008.08.059
(12) Wang, R.; Ren, D.; Xia, S.; Zhang, Y.; Zhao, J. J. Hazard.Mater. 2009, 169, 926. doi: 10.1016/j.jhazmat.2009.04.036
(13) Bautista-Toledo, I.; Ferro-Garcia, M. A.; Rivera-Utrilla, J.;Moreno-Castilla, C.; Vegas Fernandez, F. J. Environ. Sci.Technol. 2005, 39, 6246. doi: 10.1021/es0481169
(14) Pan, B.; Xing, B. S. J. Agric. Food Chem. 2010, 58, 8338. doi: 10.1021/jf101346e
(15) Kuo, C. Y. Desalination 2009, 249, 976. doi: 10.1016/j.desal.2009.06.058
(16) Xu, J.;Wang, L.; Zhu, Y. F. Langmuir 2012, 28, 8418. doi: 10.1021/la301476p
(17) Yuan,W. H.; Li, B. Q.; Li, L. Acta Phys. -Chim. Sin. 2011, 27,2244. [袁文辉, 李保庆, 李莉. 物理化学学报, 2011, 27,2244.] doi: 10.3866/PKU.WHXB20110838
(18) Nakanishi, A.; Tamai, M.; Kawasaki, N.; Nakamura, T.; Tanada,S. J. Colloid Interface Sci. 2002, 252, 393. doi: 10.1006/jcis.2002.8387
(19) Asada, T.; Oikawa, K.; Kawata, K.; Ishihara, S.; Iyobe, T.;Yamada, A. J. Health Sci. 2004, 50, 588. doi: 10.1248/jhs.50.588
(20) Furhacker, M.; Scharf, S.;Weber, H. Chemosphere 2000, 41,751. doi: 10.1016/S0045-6535(99)00466-X
(21) Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.;Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S.Nature 2007, 448, 457. doi: 10.1038/nature06016
(22) Dreyer, D. R.; Park, S.; Bielawski, C.W.; Ruoff, R. S. Chem.Soc. Rev. 2010, 39, 228. doi: 10.1039/b917103g
(23) Yang, S. T.; Chang, Y. L.;Wang, H. F.; Liu, G. B.; Chen, S.;Wang, Y.W.; Liu, Y. F.; Cao, A. N. J. Colloid Interface Sci.2010, 351, 122. doi: 10.1016/j.jcis.2010.07.042
(24) Zhang, K.; Dwivedi, V.; Chi, C. Y.;Wu, J. S. J. Hazard. Mater.2010, 182, 162. doi: 10.1016/j.jhazmat.2010.06.010
(25) Nana, Z.; Haixia, Q.; Youmiao, S.;Wei,W.; Jianping, G.Carbon 2011, 49, 827. doi: 10.1016/j.carbon.2010.10.024
(26) Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M. J. Hazard.Mater. 2012, 215-216, 272.
(27) Zhang,W.; Zhou, C.; Zhou,W.; Lei, A.; Zhang, Q.;Wan, Q.;Zou, B. Bull. Environ. Contam. Toxicol. 2011, 87, 86. doi: 10.1007/s00128-011-0304-1
(28) Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S. M.; Su,X. J. Colloid Interface Sci. 2012, 368, 540. doi: 10.1016/j.jcis.2011.11.015
(29) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. doi: 10.1021/ja01539a017
(30) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. ActaPhys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉,吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.] doi: 10.3866/PKU.WHXB20100812
(31) Sing, K. S.W.; Everett, D. H.; Haul, R. A.W.; Moscou, L.;Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl.Chem. 1985, 57, 603. doi: 10.1351/pac198557040603
(32) Everett, D. H. Basic Principles of Colloid Science; The RoyalSociety of Chemistry: London, 1988.
(33) Fan, X. B.; Peng,W. C.; Li, Y.; Li, X. Y.;Wang, S. L.; Zhang, G.L.; Zhang, F. B. Adv. Mater. 2008, 20, 4490. doi: 10.1002/adma.v20:23
(34) Ho, Y. S.; McKay, G. Water Res. 2000, 34, 735. doi: 10.1016/S0043-1354(99)00232-8
(35) Blanchard, G.; Maunaye, M.; Martin, G. Water Res. 1984, 18,1501. doi: 10.1016/0043-1354(84)90124-6
(36) Zhao, G. X.; Li, J. X.;Wang, X. K. Chem. Eng. J. 2011, 173,185. doi: 10.1016/j.cej.2011.07.072
(37) Langmuir, I. J. Am. Chem. Soc. 1916, 38, 2221. doi: 10.1021/ja02268a002
(38) Freundlich, H. J. Phys. Electrochem. 1906, 57, 385.
(39) Hameed, B. H. J. Hazard. Mater. 2008, 154, 204. doi: 10.1016/j.jhazmat.2007.10.010
(40) Radovic, L. R.; Moreno-Castilla, C.; Rivera-Utrilla, J. CarbonMaterials as Adsorbents in Aqueous Solutions. In Chemistryand Physics of Carbon; Radovic, L. R. Ed.; Marcel Dekker:New York, 2001; Vol. 27, pp 227-405.
(41) Ersoz, A.; Denizli, A.; Sener, I.; Atilir, A.; Diltemiz, S.; Say, R.Sep. Purif. Technol. 2004, 38, 173. doi: 10.1016/j.seppur.2003.11.004
(42) Chandra, V.; Park, J.; Chun, Y.; Lee, J.W.; Hwang, I. C.; Kim,K. S. ACS Nano 2010, 4, 3979. doi: 10.1021/nn1008897
(43) Coughlin, R.W.; Ezra, F. S. Environ. Sci. Technol. 1968, 2, 291.doi: 10.1021/es60016a002

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[3] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[4] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[6] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[7] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[8] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[9] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[10] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[11] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[12] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[13] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[14] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.
[15] SUN Meng, LI Jing-Hong. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment[J]. Acta Phys. Chim. Sin., 2017, 33(1): 198-210.