Please wait a minute...
Acta Phys. Chim. Sin.
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Structure and Potential Energy Function of ClF- Molecular Ion
LI Song1, CHEN Shan-Jun1, ZHU De-Sheng1, WEI Jian-Jun2
1 College of Physical Science and Technology, Yangtze University, Jingzhou 434023, Hubei Province, P. R. China;
2 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, Sichuan Province, P. R. China
Download:   PDF(791KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The molecular structure of the ground electronic state (X2Σ+) of 35ClF- and 37ClF- molecular ions have been calculated using single and double substitution quadratic configuration interaction calculations with the triple contribution [QCISD(T)] method and the simple and double excitation coupled-cluster theory with noniterative treatment with the triple excitations [CCSD(T)] method in combination with the correlation consistent basis sets aug-cc-pVXZ (X=D, T, Q, 5). Basis set extrapolation procedures were employed to estimate the complete basis set limit using results obtained with the CCSD(T) method. The analytical potential energy curves for the ground state of the systems were determined by fitting the data of single point energy scans that were calculated at the CCSD(T)/aug-cc-pVXZ (X=D, T, Q, 5) level of theory. The obtained potential energy curves correctly described the configuration and dissociation energy of the molecular ion and was well reproduced by the Murrell-Sorbie function. The corresponding spectroscopic parameters for the ground states of 35ClF- and 37ClF- molecular ions were also deduced. Parallel computations were carried out for the neutral ClF radical on the same level of theory. The results were in good agreement with available experimental data. The consistency between our results and previously reported experimentally determined values demonstrated the feasibility of the theoretical approach performed in this work. The optimized equilibrium geometric parameters were further used to derive the electron affinities of the neutral ClF radical. The vertical detachment energy of ClF- was also determined. Based on computation results for ClF-, the vibrational levels and corresponding molecular constants for the X2Σ+ states of 35ClF- and 37ClF- molecular ions were obtained by solving the radical Schr?dinger equation of the nuclear motion.



Key wordsClF-      Potential energy curve      Analytical potential energy function      Spectroscopic parameter      Electron affinity      Vibrational level     
Received: 06 November 2012      Published: 31 January 2013
MSC2000:  O641  
Fund:  

The project was supported by the Technology Creative Project of Excellent Middle & Young Team of Hubei Province, China (T201204), Excellent Young and Middle-Aged Talent of Education Burea of Hubei Province, China (Q20091215), and Scientific Research Starting Foundation for Ph. D. of Yangtze University, China.

Cite this article:

LI Song, CHEN Shan-Jun, ZHU De-Sheng, WEI Jian-Jun. Structure and Potential Energy Function of ClF- Molecular Ion. Acta Phys. Chim. Sin., 2013, 29(04): 737-744.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201301311     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I04/737

(1) Chen, H. J.; Tang, H. Y.; Cheng, X. L.;Wang, Q.W. ActaPhys. -Chim. Sin. 2010, 26, 740. [陈恒杰, 唐海燕, 程新路,王全武. 物理化学学报, 2010, 26, 740.] doi: 10.3866/PKU.WHXB20100240
(2) Wang, R.; Jiang, G.; Meng, D. Q.; Zhu, Z. H. Acta Phys. -Chim.Sin. 2009, 25, 1103. [王蓉, 蒋刚, 蒙大桥, 朱正和. 物理化学学报, 2009, 25, 1103.] doi: 10.3866/PKU.WHXB20090617
(3) Xu, Y. Q.; Gao, X. M.; Zhang,W. J. Acta Phys. -Chim. Sin.2007, 23, 1075. [许永强, 高晓明, 张为俊. 物理化学学报,2007, 23, 1075.] doi: 10.3866/PKU.WHXB20070721
(4) Zhang, Y. G.; Gao, T.; Li, G. X.; Zhang, C. Y.; Chen, D.; Zhu, Z.H. Acta Phys. -Chim. Sin. 2006, 22, 780. [张云光, 高涛, 李桂霞, 张传瑜, 陈东, 朱正和. 物理化学学报, 2006, 22, 780.]doi: 10.3866/PKU.WHXB20060703
(5) Li, S.; Han, L. B.; Zhou, Z. L. Density Functional Study ofPotential Energy Function of Sulfur Monoxide. Proceedings of2012 International Conference on Computer Science andMathematics, Physical Education and Management,Wuahn,Chian, Sept. 20-21, 2012; Zou, T. R., Han, H. Y., Eds.; IEEEPress: Beijing, China, 2012.
(6) Wilkins, J.W.; Gabriel, J. R. Phys. Rev. 1963, 132, 1950. doi: 10.1103/PhysRev.132.1950
(7) Schoemaker, D. Phys. Rev. 1966, 149, 693. doi: 10.1103/PhysRev.149.693
(8) Susman, S. Phys. Stat. Sol. B 1970, 37, 561.
(9) Griscom, D. L.; Friebele, E. J. Phys. Rev. B 1991, 43, 7427. doi: 10.1103/PhysRevB.43.7427
(10) Delbecq, C. J.; Hutchinson, E.; Yuster, P. H. J. Chem. Phys.1983, 79, 1408. doi: 10.1063/1.445900
(11) Van Huis, T. J.; Galbraith, J. M.; Schaefer, H. F., III. Mol. Phys.1996, 89, 607.
(12) Bruna. P. J.; Greinr, F. Chem. Phys. Lett. 2000, 318, 263. doi: 10.1016/S0009-2614(00)00022-1
(13) Midda, S.; Das, A. K. J. Mol. Struct. -Theochem 2005, 713, 101.doi: 10.1016/j.theochem.2004.09.047
(14) Zhu, Z. H. Atomic and Molecular Reaction Statics; SciencePress: Beijing, 1996. [朱正和. 原子分子反应静力学. 北京:科学出版社, 1996.]
(15) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem.Phys. 1987, 87, 5968. doi: 10.1063/1.453520
(16) Raghavachari, K.; Trucks, G.W.; Pople, J. A.; Head-Gordon, M.Chem. Phys. Lett. 1989, 157, 479.
(17) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. doi: 10.1063/1.456153
(18) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem.Phys. 1992, 96, 6796. doi: 10.1063/1.462569
(19) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358.doi: 10.1063/1.464303
(20) Peterson, K. A.;Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys.1994, 100, 7410. doi: 10.1063/1.466884
(21) Helgaker, T.; Klopper,W.; Koch, H.; Noga, J. J. Chem. Phys.1997, 106, 9639. doi: 10.1063/1.473863
(22) Feller, D. J. Chem. Phys. 1992, 96, 6104.
(23) Martin, J. M. L. Chem. Phys. Lett. 1996, 259, 669. doi: 10.1016/0009-2614(96)00898-6
(24) Dixon, D. A.; de Jong,W. A.; Peterson, K. A.; McMahon, T. B.J. Phys. Chem. A 2005, 109, 4073. doi: 10.1021/jp044561e
(25) Feller, D.; Peterson, K. A.; Crawford, T. D. J. Chem. Phys.2006, 124, 054107. doi: 10.1063/1.2137323
(26) Feller, D.; Peterson, K. A. J. Chem. Phys. 2007, 126, 114105.doi: 10.1063/1.2464112
(27) Balabanov, N. B.; Peterson, K. A. J. Phys. Chem. A 2003, 107,7465. doi: 10.1021/jp035547p
(28) Murrell, J. N.; Sorbie, K. S. J. Chem. Soc. Faraday Trans. 21974, 70, 1552. doi: 10.1039/f29747001552
(29) Zhu, Z. H.; Yu, H. G. Molecular Structure and MolecularPotential Energy Function; Science Press: Beijing, 1997.[朱正和, 俞华根. 分子结构与分子势能函数. 北京: 科学出版社, 1997.]
(30) Le Roy, R. J. Level 8.0: A Computer Program for Solving theRadial Schrödinger Equation for Bound and QuasiboundLevels, University ofWaterloo Chemical Physics ResearchReport CP-663; see http://leroy.uwaterloo.ca/programs.
(31) Huber, K. P.; Herzberg, G. Molecular Spectra and MolecularStructure. IV. Constants of Diatomic Molecules; Van NostrandReinhold Company: New York, 1979.
(32) Wang, X. Q.; Yang, C. L.; Su, T.;Wang, M. S. Acta Phys. Sin.2009, 58, 6873. [王新强, 杨传路, 苏涛, 王美山. 物理学报, 2009, 58, 6873.]
(33) Shi, D. H.; Zhang, J. P.; Sun, J. F.; Liu, Y. F.; Zhu, Z. L. ActaPhys. Sin. 2009, 58, 5329. [施德恒, 张金平, 孙金锋, 刘玉芳,朱遵略. 物理学报, 2009, 58, 5329.]
(34) Chen, L.;Woon, D. E.; Dunning, T. H., Jr. J. Phys. Chem. A2009, 113, 12645. doi: 10.1021/jp905064v
(35) Bürger, H.; Schulz, P.; Jacob, E.; Fähnle, M. Z. Naturforsch. TeilA 1986, 41A, 1015.

[1] FAN Zhi-Hui, CHEN Fei-Wu. Computation of Electron Affinities with the Second Order Multireference Perturbation Theory[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2064-2076.
[2] CAO Guo-Jin, ZHENG Wei-Jun. Structures, Stabilities and Physicochemical Properties of Nucleobase Tautomers[J]. Acta Phys. Chim. Sin., 2013, 29(10): 2135-2147.
[3] HOU Ruo-Bing, SUN Yan-Li, WANG Bei-Bei. One-Electron Redox Characteristics of One-Hydroxyl Radical Adducts of A-T Base Pairs[J]. Acta Phys. Chim. Sin., 2012, 28(01): 73-77.
[4] CHEN Heng-Jie, TANG Hai-Yan, CHENG Xin-Lu, WANG Quan-Wu. Ground and Low-Lying Excited States of NaC Molecule[J]. Acta Phys. Chim. Sin., 2010, 26(03): 740-744.
[5] TANG Dian-Yong, HUANG Xue-Na, ZOU Ting, JIN Cheng, HU Jian-Ping, FU Qin-Chao. Geometric Structures and Electronic Properties of Small Gold-Palladium Binary Clusters[J]. Acta Phys. Chim. Sin., 2010, 26(02): 453-460.
[6] XU Yong-Qiang; GAO Xiao-Ming; ZHANG Wei-Jun. Structure and Analytical Potential Energy Function of the Ground State of CuC and CuN Molecules[J]. Acta Phys. Chim. Sin., 2007, 23(07): 1075-1079.
[7] Feng Xue-Jun;Li Qian-Shu. Theoretical Studies on Perfluoroadamantane and Its Radicals[J]. Acta Phys. Chim. Sin., 2004, 20(09): 1172-1174.
[8] Chen Lin-Hong;Shang Ren-Cheng. Quantum Chemical Calculation on Structure and Potential Energy Curve for the Ground State of Molecule LaH[J]. Acta Phys. Chim. Sin., 2002, 18(08): 737-740.
[9] Li Xi-Ping, Tu Xue-Yan. Studies on the Quantum Chemistry for the Low-lying Excited States of ZnNe[J]. Acta Phys. Chim. Sin., 2000, 16(03): 238-242.
[10] Wang Chao-Cun, Ha Cheng-Yong, Yao Si-De. One-electron Reduction Potentials of Tea Polyphenolic Compounds[J]. Acta Phys. Chim. Sin., 1998, 14(11): 1020-1024.