Please wait a minute...
Acta Phys. Chim. Sin.
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Isomerization Mechanismof Xylene Catalyzed by H-ZSM-5 Molecular Sieve
LI Ling-Ling1, NIE Xiao-Wa1,2, SONG Chun-Shan1,3, GUO Xin-Wen1
1 State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China;
2 Department of Chemical & Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA;
3 EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
Download:   PDF(1209KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The isomerization mechanism of xylene over H-ZSM-5 molecular sieve has been examined using the density functional theory (DFT) and our own-N-layered integrated molecular orbital+molecular mechanics (ONIOM) methods. The structures of intermediate species and transition states are described. The adsorption of reactant and desorption of product significantly affect the tendency of xylene to isomerize. Calculated activation energies suggest that isomerization occurs during the formation of meta-xylene within the extended pore structure of H-ZSM-5 molecular sieve. However, the produced meta-xylene is retained within the pore because of a high desorption energy, and further isomerization to form para-xylene is kinetically favorable. The acid sites within the pores of the molecular sieve allow selective formation of para-xylene. On the external surface of H-ZSM-5 molecular sieve, which lacks the steric constraints of the extended pore structure, xylene isomerizes to form meta-xylene, which can readily desorb from the active site. Such non-selective isomerization decreases the selectivity for para-xylene. Thus, external surface modification of H-ZSM-5 molecular sieve should suppress the non-selective isomerization of xylene, thereby increasing the selectivity for para-xylene by restricting isomerization to inside the pores of the molecular sieve. Calculated relative reaction rate constants for xylene isomerization also indicate that xylene isomerization occurring on the external surface of H-ZSM-5 with meta-xylene as the product has the highest reaction rate. The selectivity for para-xylene is decreased as the reaction temperature is increased.



Key wordsIsomerization mechanism      Xylene      Density functional theory      ONIOM      H-ZSM-5     
Received: 04 December 2012      Published: 06 February 2013
MSC2000:  O641  
Fund:  

The project was supported by the Programfor New Century Excellent Talent in University, China (NCET-04-0268) and High Performance Computing Department of Network and Information Center, Dalian University of Technology, China.

Cite this article:

LI Ling-Ling, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-WenP. Isomerization Mechanismof Xylene Catalyzed by H-ZSM-5 Molecular Sieve. Acta Phys. Chim. Sin., 2013, 29(04): 754-762.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201302063     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I04/754

(1) Zou,W.; Yang, D. Q.; Zhu, Z. R.; Kong, D. J.; Chen, Q. L.;Gao, Z. Chin. J. Catal. 2005, 26, 470. [邹薇, 杨德琴, 朱志荣, 孔德金, 陈庆龄, 高滋. 催化学报, 2005, 26, 470.]
(2) Wang, J.; Zhao, B. Y.; Xie, Y. C. Acta Phys. -Chim. Sin. 2001,17, 966. [王珏, 赵璧英, 谢有畅. 物理化学学报, 2001, 17,966.] doi: 10.3866/PKU.WHXB20011102
(3) Zhao, Y.;Wu, H. Y.; Tan,W.; Zhang, M. M.; Liu, M.; Song, C.S.;Wang, X. S.; Guo, X.W. Catal. Today 2010, 156,69. doi: 10.1016/j.cattod.2009.12.012
(4) Taylor,W. J.;Wangman, D. D.;Williams, M. G.; Pitzer, K. S.;Rossini, F. D. J. Res. Natl. Bur. Std. 1946, 37, 95. doi: 10.6028/jres.037.035
(5) Rabiu, S.; Al-Khattaf, S. Ind. Eng. Chem. Res. 2008, 47, 39. doi: 10.1021/ie071038o
(6) Kang, C. L.; Long, J.; Zhou, Z. H.;Wu,W.; Gu, H. H. ActaPetrolei Sinica 2012, 28, 533. [康承琳, 龙军, 周震寰,吴巍, 顾昊辉. 石油学报, 2012, 28, 533.]
(7) Rozanska, X.; van Santen, A. R.; Hutschk, F.; Hafner, J. J. Am.Chem. Soc. 2001, 123, 7655. doi: 10.1021/ja0103795
(8) Guisnet, M.; Gnep, N. S.; Morin, S. Microporous MesoporousMat. 2000, 35-36, 47.
(9) Cortes, A.; Corma, A. J. Catal. 1978, 51, 338. doi: 10.1016/0021-9517(78)90271-3
(10) Zheng, S. R.; Jentys, A.; Lercher, J. A. J. Catal. 2006, 241, 304.doi: 10.1016/j.jcat.2006.04.026
(11) Zhang, J.; Zhou, D. H.; Ni, D. Chin. J. Catal. 2008, 29, 715.[张佳, 周丹红, 倪丹. 催化学报, 2008, 29, 715.]
(12) Nie, X.W.; Liu, X.; Song, C. S.; Guo, X.W. Chin. J. Catal.2009, 30, 453. [聂小娃, 刘新, 宋春山, 郭新闻. 催化学报,2009, 30, 453.]
(13) van der Mynsbrugge, J.; Visur, M.; Olsbye, U.; Beato, P.;Bjørgen, M.; van Speybroeck, V.; Svelle, S. J. Catal. 2012, 292,201. doi: 10.1016/j.jcat.2012.05.015
(14) Li, Y. F.; Zhu, J. Q.; Liu, H.; He, P.;Wang, P.; Tian, H. P. ActaPhys. -Chim. Sin. 2011, 27, 1081. [李延锋, 朱吉钦, 刘辉,贺鹏, 王鹏, 田辉平. 物理化学学报, 2011, 27, 1081.] doi: 10.3866/PKU.WHXB20110516
(15) Maihom, T.; Boekfa, B.; Sirijaraensre, J.; Nanok, T.; Probst, M.;Limtrakul, J. J. Phys. Chem. C 2009, 113, 6654. doi: 10.1021/jp809746a
(16) Namuangruk, S.; Meeprasert, J.; Khmthong, P.; Faungnawakij,K. J. Phys. Chem. C 2011, 115, 11649. doi: 10.1021/jp202408q
(17) Nie, X.W.; Janik, M. J.; Guo, X.W.; Liu, X.; Song, C. S.J. Phys. Chem. C 2012, 116, 4071. doi: 10.1021/jp209337m
(18) Olson, D. H.; Kokotailo, G. T.; Lawton, S. L.; Meier,W. M.J. Phys. Chem. 1981, 85, 2238. doi: 10.1021/j150615a020
(19) Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier,W. M.Nature 1978, 272, 437. doi: 10.1038/272437a0
(20) Fripiat, J. G.; Berger-André, F.; André, J. M.; Derouane, E. G.Zeolites 1983, 3, 306. doi: 10.1016/0144-2449(83)90174-4
(21) Derouane, E. G.; Fripiat, J. G. Zeolites 1985, 5, 165. doi: 10.1016/0144-2449(85)90025-9
(22) Jungsuttiwong, S.; Lomratsiri, J.; Limtrakul, J. Int. J. Quant.Chem. 2011, 111, 2275. doi: 10.1002/qua.v111.10
(23) Maseras, F.; Morokuma, K. J. Comput. Chem. 1995, 16, 1170.
(24) Matsubara, T.; Sieber, S.; Morokuma, K. Int. J. Quant. Chem.1996, 60, 1101.
(25) Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.;Frisch, M. J. J. Mol. Struct. -Theochem 1999, 462, 1.doi: 10.1016/S0166-1280(98)00475-8
(26) Rappe, A. K.; Upton, T. H. J. Am. Chem. Soc. 1992, 114, 7507.doi: 10.1021/ja00045a026
(27) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
(28) Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008,10, 6615. doi: 10.1039/b810189b
(29) Goerigk, L.; Grimme, S. Phys. Chem. Chem. Phys. 2011, 13,6670. doi: 10.1039/c0cp02984j
(30) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.
(31) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.
(32) Zhang, X. D.; Li, Y. G.; Zeng, Z. H. Chin. J. Chem. Phys. 1991,4, 395. [张晓东, 李玉光, 曾昭槐, 化学物理学报, 1991, 4,395.]
(33) Li, Y. G.; Chang, X. D.; Zeng, Z. H. Ind. Eng. Chem. Res. 1992,31, 187. doi: 10.1021/ie00001a027
(34) Zeng, Z. H., Pan, G. S. Acta Phys. -Chim. Sin. 1989, 5, 145.[曾昭槐, 潘贵生. 物理化学学报, 1989, 5, 145.] doi: 10.3866/PKU.WHXB19890204

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[6] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[7] HU Ling-Xiao, WANG Lian, WANG Fei, ZHANG Chang-Bin, HE Hong. Catalytic Oxidation of o-Xylene over Pd/γ-Al2O3 Catalysts[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1681-1688.
[8] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[9] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[10] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[11] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.
[12] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[13] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. Chim. Sin., 2017, 33(3): 530-538.
[14] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Phys. Chim. Sin., 2017, 33(3): 548-553.
[15] LI Gui-Xia, JIANG Yong-Chao, LI Peng, PAN Wei, LI Yong-Ping, LIU Yun-Jie. Helium Separation Performance of the Rhombic-Graphyne Monolayer Membrane: Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2219-2226.