Please wait a minute...
Acta Phys. -Chim. Sin.
THERMODYNAMICS, KINETICS, AND STRUCTURAL CHEMISTRY     
Femtosecond Two-Dimensional Infrared Spectroscopy of N-Ethypropionamide
SHI Ji-Pei, ZHAO Juan, YANG Fan, WANG Jian-Ping
Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
Download:   PDF(1013KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Femtosecond two-dimensional infrared (2D IR) spectroscopy, steady-state infrared spectroscopy, and computational methods are used to examine the ultrafast structural dynamics of a β-peptide model compound, N-ethylpropionamide (NEPA). NEPA has amide-I vibrational characteristics similar to that in an α-peptide, which shows sensitivity to molecular structure and chemical environment. The 2D IR spectral dynamics reveal a spectral diffusion time of ~1 ps, which is believed to be consistent with the time scale of the structural dynamics of the amide-water hydrogen bond.



Key wordsN-ethypropionamide      Femtosecond two-dimensional infrared spectroscopy      Anharmonic vibration      Molecular dynamics simulation     
Received: 21 December 2012      Published: 21 February 2013
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21173231, 91121020, 20727001) and Hundred Talent Project of the Chinese Academy of Sciences.

Cite this article:

SHI Ji-Pei, ZHAO Juan, YANG Fan, WANG Jian-Ping. Femtosecond Two-Dimensional Infrared Spectroscopy of N-Ethypropionamide. Acta Phys. -Chim. Sin., 2013, 29(04): 695-700.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201302213     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I04/695

(1) Yu, X.;Wang, Q.; Lin, Y.; Zhao, J.; Zhao, C.; Zheng, J.Langmuir 2012, 28, 6595. doi: 10.1021/la3002306
(2) Wu, Y.; Han,W.;Wang, D.; Gao, Y.; Zhao, Y. Accounts Chem.Res. 2008, 41, 1418. doi: 10.1021/ar800070b
(3) Beke, T.; Csizmadia, I. G.; Perczel, A. J. Am. Chem. Soc. 2006,128, 5158. doi: 10.1021/ja0585127
(4) Karlsson, A. J.; Pomerantz,W. C.;Weisblum, B.; Gellman, S.H.; Palecek, S. P. J. Am. Chem. Soc. 2006, 128, 12630. doi: 10.1021/ja064630y
(5) Pomerantz,W. C.; Abbott, N. L.; Gellman, S. H. J. Am. Chem.Soc. 2006, 128, 8730. doi: 10.1021/ja062412z
(6) Montalvo, G.;Waegele, M. M.; Shandler, S.; Gai, F.; DeGrado,W. F. J. Am. Chem. Soc. 2010, 132, 5616. doi: 10.1021/ja100459a
(7) Hamm, P.;Woutersen, S.; Rueping, M. Helv. Chim. Acta 2002,85, 3883. doi: 10.1002/1522-2675(200211)85:11<3883::AID-HLCA3883>3.0.CO;2-G
(8) Scheurer, C.; Piryatinski, A.; Mukamel, S. J. Am. Chem. Soc.2001, 123, 3114. doi: 10.1021/ja003412g
(9) Krimm, S.; Bandekar, J. Adv. Protein Chem. 1986, 38, 181. doi: 10.1016/S0065-3233(08)60528-8
(10) Dong, A.; Huang, P.; Caughey,W. S. Biochemistry 1990, 29,3303. doi: 10.1021/bi00465a022
(11) Kim, Y. S.;Wang, J.; Hochstrasser, R. M. J. Phys. Chem. B2005, 109, 7511. doi: 10.1021/jp044989d
(12) Ganim, Z.; Chung, H. S.; Smith, A.W.; DeFlores, L. P.; Jones,K. C.; Tokmakoff, A. Accounts Chem. Res. 2008, 41, 432. doi: 10.1021/ar700188n
(13) Wang, J. Phys. Chem. Chem. Phys. 2009, 11, 5310. doi: 10.1039/b900063a
(14) Luo, J.;Wu, F.; Yu, J.;Wang, R.; Yu, Z. J. Phys. Chem. B 2011,115, 8901. doi: 10.1021/jp200296v
(15) Remorino, A.; Hochstrasser, R. M. Accounts Chem. Res. 2012,45, 1896. doi: 10.1021/ar3000025
(16) Jackson, M.; Haris, P. I.; Chapman, D. Biochimica et BiophysicaActa (BBA)-Protein Structure and Molecular Enzymology 1989,998, 75. doi: 10.1016/0167-4838(89)90121-0
(17) Zanni, M. T.; Asplund, M. C.; Hochstrasser, R. M. J. Chem.Phys. 2001, 114, 4579. doi: 10.1063/1.1346647
(18) Khalil, M.; Demirdoeven, N.; Tokmakoff, A. J. Phys. Chem. A2003, 107, 5258. doi: 10.1021/jp0219247
(19) Asbury, J. B.; Steinel, T.; Fayer, M. D. J. Phys. Chem. B 2004,108, 6544. doi: 10.1021/jp036600c
(20) Hochstrasser, R. M. Proc. Natl. Acad. Sci. U. S. A. 2007, 104,14190. doi: 10.1073/pnas.0704079104
(21) Li, D.; Yang, F.; Han, C.; Zhao, J.;Wang, J. J. Phys. Chem. Lett.2012, 3, 3665.
(22) Qian,W.; Krimm, S. J. Phys. Chem. 1993, 97, 11578. doi: 10.1021/j100147a003
(23) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.02; Gaussian Inc.: Pittsburgh, PA, 2009.
(24) Phillips, J. C.; Braun, R.;Wang,W.; Gumbart, J.; Tajkhorshid,E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K.J. Comput. Chem. 2005, 26, 1781. doi: 10.1002/jcc.20289
(25) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.;Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha,S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom,B.; Reiher,W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.;Stote, R.; Straub, J.;Watanabe, M.;Wiorkiewicz-Kuczera, J.;Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586.
(26) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. doi: 10.1063/1.470117
(27) Martyna, G. J.; Tobias, D. J.; Klein, M. L. J. Chem. Phys. 1994,101, 4177. doi: 10.1063/1.467468
(28) Feller, S. E.; Zhang, Y.; Pastor, R.W.; Brooks, B. R. J. Chem.Phys. 1995, 103, 4613. doi: 10.1063/1.470648
(29) Bour, P.; Keiderling, T. A. J. Chem. Phys. 2003, 119, 11253. doi: 10.1063/1.1622384
(30) Kwac, K.; Cho, M. J. Chem. Phys. 2003, 119, 2247. doi: 10.1063/1.1580807
(31) Schmidt, J. R.; Corcelli, S. A.; Skinner, J. L. J. Chem. Phys.2004, 121, 8887. doi: 10.1063/1.1791632
(32) Hayashi, T.; Zhuang,W.; Mukamel, S. J. Phys. Chem. A 2005,109, 9747. doi: 10.1021/jp052324l
(33) Lin, Y. S.; Shorb, J. M.; Mukherjee, P.; Zanni, M. T.; Skinner, J.L. J. Phys. Chem. B 2008, 113, 592.
(34) Maekawa, H.; Ge, N. H. J. Phys. Chem. B 2010, 114, 1434. doi: 10.1021/jp908695g
(35) Wang, L.; Middleton, C. T.; Zanni, M. T.; Skinner, J. L. J. Phys.Chem. B 2011, 115, 3713.
(36) Cai, K.; Han, C.;Wang, J. Phys. Chem. Chem. Phys. 2009, 11,9149. doi: 10.1039/b910269h
(37) Beke, T. S.; Somlai, C.; Magyarfalvi, G. B.; Perczel, A. S.;Tarczay, G. R. J. Phys. Chem. B 2009, 113, 7918. doi: 10.1021/jp9022844
(38) Piryatinski, A.; Skinner, J. L. J. Phys. Chem. B 2002, 106, 8055.doi: 10.1021/jp0202542
(39) Bagchi, S.; Boxer, S. G.; Fayer, M. D. J. Phys. Chem. B 2012,116, 4034. doi: 10.1021/jp2122856
(40) Wang, J.; Hochstrasser, R. M. J. Phys. Chem. B 2006, 110, 3798.doi: 10.1021/jp0530092
(41) Ghosh, A.; Hochstrasser, R. M. Chem. Phys. 2011, 390, 1. doi: 10.1016/j.chemphys.2011.07.018
(42) Zhang, Z.; Piatkowski, L.; Bakker, H. J.; Bonn, M. Nat. Chem2011, 3, 888. doi: 10.1038/nchem.1158
(43) Hamm, P.; Lim, M.; Hochstrasser, R. M. J. Phys. Chem. B 1998,102, 6123. doi: 10.1021/jp9813286
(44) Jimenez, R.; Kumar, P. V.; Maroncelli, M. Nature 1994, 369,471. doi: 10.1038/369471a0

[1] Wenqiong CHEN,Yongji GUAN,Xiaoping ZHANG,Youquan DENG. Influence of External Electric Field on Vibrational Spectrum of Imidazolium-Based Ionic Liquids Probed by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 912-919.
[2] Fu-Feng LIU,Yu-Bo FAN,Zhen LIU,Shu BAI. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[3] . Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1354-1365.
[4] . Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1140-1148.
[5] Yi-Jian CHEN,Hong-Tao ZHOU,Ji-Jiang GE,Gui-Ying XU. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1214-1222.
[6] Qing-Kang LIU,Wen-Ping SONG,Qi-Tao HUANG,Guang-Yu ZHANG,Zhen-Xiu HOU. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2472-2479.
[7] Yi-Ran SUN,Fei YU,Jie MA. Research Progress of Nanoconfined Water[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2173-2183.
[8] Shao-Gui WU,Dan FENG. Free Energy Calculation for Base Pair Dissociation in a DNA Duplex[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1282-1288.
[9] Zi-Yu LIU,Qi LIAO,Zhi-Qiang JIN,Lei ZHANG,Lu ZHANG. Effect of Electrolytes on the Interfacial Behavior of Nonionic-Anionic Surfactant Solutions Using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1168-1174.
[10] Wei XIE,Ze-Ren XU,Ming WANG,Si-Chuan XU. Molecular Dynamics Simulation for Levo-Benzedrine to Transmit through Molecular Channels within D3R[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 907-920.
[11] Qing LI,Deng-Feng YANG,Jian-Hua WANG,Qi WU,Qing-Zhi LIU. Biomimetic Modification and Desalination Behavior of (15, 15) Carbon Nanotubes with a Diameter Larger than 2 nm[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 691-700.
[12] Xian-Mei MENG,Shao-Long ZHANG,Qing-Gang ZHANG. Effect of the Allosteric Inhibitor Efavirenz on HIV-1 Reverse Transcriptase by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 436-444.
[13] Hong-Chen SHEN,Ji-Yong DING,Li LI,Fu-Feng LIU. Effect of Y220C Mutant on the Conformational Transition of p53C Probed by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2620-2627.
[14] Qiang. ZHANG,Cheng. CHENG,Xia. ZHANG,Dong-Xia. ZHAO. Jump Rotational Mechanism of Ammonium Ion in Aqueous Solutions[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1461-1467.
[15] Lü Ye-Qing, ZHENG Shi-Li, WANG Shao-Na, DU Hao, ZHANG Yi. Structure and Diffusivity of Oxygen in Concentrated Alkali-Metal Hydroxide Solutions: A Molecular Dynamics Simulation Study[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1045-1053.