Please wait a minute...
Acta Phys. Chim. Sin.
CATALYSIS AND SURFACE SCIENCE     
Catalytic Performance of Heat-Treated Fe-Melamine/C and Fe-g-C3N4/C Electrocatalysts for Oxygen Reduction Reaction
LI Shang, WANG Jia-Tang, CHEN Rui-Xin, ZHAO Wei, QIAN Liu, PAN Mu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
Download:   PDF(7445KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Melamine and its polymer (g-C3N4) were used as ligands to prepare Fe-N/C electrocatalysts for the oxygen reduction reaction (ORR) by an impregnation method. The composition, morphology and electrocatalytic activity of the catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and electrochemical measurements. The Fe-N/C catalyst using g-C3N4 as a complex ligand showed higher activity in the ORR than that with melamine. The formation of quaternary N active sites on the surface of the catalyst during heat treatment helps to improve their performance in the ORR.



Key wordsMelamine      Non-noble metal electrocatalyst      Oxygen reduction reaction      Graphitic N      Proton exchange membrane fuel cell     
Received: 15 October 2012      Published: 22 February 2013
MSC2000:  O643  
Fund:  

The project was supported by the Natural Science Foundation of Hubei Province, China (2012FFB05106) and Major State Basic Research Development Program of China (973) (2012CB215504).

Cite this article:

LI Shang, WANG Jia-Tang, CHEN Rui-Xin, ZHAO Wei, QIAN Liu, PAN Mu. Catalytic Performance of Heat-Treated Fe-Melamine/C and Fe-g-C3N4/C Electrocatalysts for Oxygen Reduction Reaction. Acta Phys. Chim. Sin., 2013, 29(04): 792-798.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201302221     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I04/792

(1) Bezerra, C.W. B.; Zhang, L.; Lee, K.; Liu, H.; Zhang, J.; Shi, Z.;Marques,A. L. B.; Marques, E. P.;Wu, S.; Zhang, J. Electrochim.Acta 2008, 53, 7703. doi: 10.1016/j.electacta.2008.05.030
(2) Jasinski, R. Nature 1964, 201, 1212. doi: 10.1038/2011212a0
(3) Jiang, R.; Chu, D. J. Electrochem. Soc. 2000, 147, 4605. doi: 10.1149/1.1394109
(4) Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Science 2009,324, 71. doi: 10.1126/science.1170051
(5) Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller,J. O.; Schlögl, R.; Carlsson, J. M. J. Mater. Chem. 2008, 18,4893. doi: 10.1039/b800274f
(6) Geng, D.; Liu, H.; Chen, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S.J. Power Sources 2011, 196, 1795. doi: 10.1016/j.jpowsour.2010.09.084
(7) Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao,W. J.;Wang, F. B.; Xia,X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t
(8) Niwa, H.; Kobayashi, M.; Horiba, K.; Harada, Y.; Oshima, M.;Terakura, K.; Ikeda, T.; Koshigoe, Y.; Ozaki, J.; Miyata, S.;Ueda, S.; Yamashita, Y.; Yoshikawa, H.; Kobayashi, K. J. PowerSources 2011, 196, 1006. doi: 10.1016/j.jpowsour.2010.08.054
(9) Byon, H. R.; Suntivich, J.; Shao-Horn, Y. Chem. Mater. 2011,23, 3421. doi: 10.1021/cm2000649
(10) Yang,W.; Chen, S.; Lin,W. Int. J. Hydrog. Energy 2012, 37,942. doi: 10.1016/j.ijhydene.2011.03.103
(11) Zhao, Y. C.; Yu, D. L.; Zhou, H.W.; Tian, Y. J. J. Mater. Sci.2005, 40, 2645. doi: 10.1007/s10853-005-2096-3
(12) Li, S.; Zhang, L.; Liu, H.; Pan, M.; Zan, L.; Zhang, J.Electrochim. Acta 2010, 55, 4403. doi: 10.1016/j.electacta.2010.01.090
(13) Liu, J. D.; Liu, J. J.; Yuan, J. H.; Tao, G. H.;Wu, D. S.; Yang, X.F.; Yang, L. Q.; Huang, H. Y.; Zhou, L.; Xu, X. Y.; Hu, J. J.;Zhuang, Z. X. Toxicol. Lett. 2012, 212, 307. doi: 10.1016/j.toxlet.2012.05.017
(14) Rounaghi, S. A.; KianiRashid, A. R.; Eshghi, H.; Khaki, J. V.J. Solid State Chem. 2012, 190, 8. doi: 10.1016/j.jssc.2012.01.005
(15) Yan, H.; Yang, H. J. Alloy. Compd. 2011, 509, L26.
(16) Chokai, M.; Taniguchi, M.; Moriya, S.; Matsubayashi, K.;Shinoda, T.; Nabae, Y.; Kuroki, S.; Hayakawa, T.; Kakimoto,M.; Ozaki, J.; Miyata, S. J. Photopolym. Sci. Technol. 2010, 23,459. doi: 10.2494/photopolymer.23.459
(17) Li, S.; Zhu, G.W.; Qiu, P.; Rong, G.; Pan, M. Chin. J. Catal.2010, 31, 135. [李赏, 朱广文, 邱鹏, 荣刚, 潘牧.催化学报, 2010, 31, 135.]
(18) Meng, H.; Larouche, N.; Lefèvre, M.; Jaouen, F.; Stansfield, B.;Dodelet, J. P. Electrochim. Acta 2010, 55, 6450. doi: 10.1016/j.electacta.2010.06.039
(19) Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Science 2011,332, 443. doi: 10.1126/science.1200832

[1] SHEN Hai-Bo, JIANG Hao, LIU Yi-Si, HAO Jia-Yu, LI Wen-Zhang, LI Jie. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1811-1821.
[2] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[3] ZHOU Yang, CHENG Qing-Qing, HUANG Qing-Hong, ZOU Zhi-Qing, YAN Liu-Ming, YANG Hui. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1429-1435.
[4] ZHAI Xiao, DING Yi. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1366-1378.
[5] WANG Jun, WEI Zi-Dong. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(5): 886-902.
[6] WANG Li, SHI He-Xia, WANG Wen-Yuan, SHI Hong, SHAO Xiang. Identifying the Hydrogen Bonding Patterns of Melamine and Melem Self-Assemblies on Au(111) Surface[J]. Acta Phys. Chim. Sin., 2017, 33(2): 393-398.
[7] Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. Chim. Sin., 2017, 33(2): 283-294.
[8] XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Phys. Chim. Sin., 2017, 33(1): 149-164.
[9] CHANG Qiao-Wan, XIAO Fei, XU Yuan, SHAO Min-Hua. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(1): 9-17.
[10] XU Yi-Ting, CHEN Long, CHEN Zhuo. Applications of Graphitic Nanomaterial's Optical Properties in Biochemical Sensing[J]. Acta Phys. Chim. Sin., 2017, 33(1): 28-39.
[11] YANG Yi, LUO Lai-Ming, DU Juan-Juan, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. Chim. Sin., 2016, 32(4): 834-847.
[12] ZHU Hong, LUO Ming-Chuan, CAI Ye-Zheng, SUN Zhao-Nan. Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2462-2474.
[13] WANG Jun, LI Li, WEI Zi-Dong. Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene[J]. Acta Phys. Chim. Sin., 2016, 32(1): 321-328.
[14] ZHANG Jie, DOU Mei-Ling, WANG Feng, LIU Jing-Jun, LI Zhi-Lin, JI Jing, SONG Ye. Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1727-1732.
[15] HAYIERBIEK Kulisong, ZHAO Shu-Xian, YANG Yang, ZENG Han. Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1715-1726.