Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (05): 897-902    DOI: 10.3866/PKU.WHXB201302252
THERMODYNAMICS, KINETICS, AND STRUCTURAL CHEMISTRY     
Thermal and Chemical Effects of Hydrogen in Catalytic Ignition of n-Butane/Air Mixture
ZHONG Bei-Jing, XIONG Peng-Fei, YANG Fan, YU Ya-Wei
Scool of Aerospace, Tsinghua University, Beijing 100084, P. R. China
Download:   PDF(816KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The kinetics of the catalytic ignition processes of hydrogen/n-butane/air on Pt surface is studied to reveal the catalytic ignition mechanism. It is found that the ignition temperature of n-butane is lower when a certain amount of hydrogen is added. However, the effect of hydrogen on the catalytic ignition process and temperature of n-butane depends on the percentage of hydrogen added. When a small amount of hydrogen is added, it has a thermal effect. Adding more hydrogen gas causes it to have a chemical effect. A good fit is obtained between simulated and experimental data for the catalytic ignition temperatures. The ranges of hydrogen content with different effects are also predicted. Furthermore, this kinetic study shows that a different onset reaction of n-butane will lead to different ignition temperatures and mechanisms.



Key wordsC4H10/H2/air mixture      Catalytic reaction mechanism      Catalytic ignition      Thermal effect and chemical effect      Platinum catalyst     
Received: 04 December 2012      Published: 25 February 2013
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (51276096).

Cite this article:

ZHONG Bei-Jing, XIONG Peng-Fei, YANG Fan, YU Ya-Wei. Thermal and Chemical Effects of Hydrogen in Catalytic Ignition of n-Butane/Air Mixture. Acta Phys. -Chim. Sin., 2013, 29(05): 897-902.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201302252     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I05/897

(1) Epstein, A. H.; Senturia, S. D. Science 1997, 276, 1211.doi: 10.1126/science.276.5316.1211
(2) Fernandez-Pello, A. C. Proc. Combust. Inst. 2002, 29, 883.doi: 10.1016/S1540-7489(02)80113-4
(3) Beretta, A.; Piovesan, L.; Forzatti, P. J. Catal. 1999, 184, 455.doi: 10.1006/jcat.1999.2446
(4) Deutschmann, O.; Schmidt, R.; Behrendt, F.;Warnatz, J. Proc.Combust. Inst. 1996, 26, 1747.
(5) Seyed-Reihani, S. A.; Jackson, G. S. Catal. Today 2010, 155, 75.doi: 10.1016/j.cattod.2009.03.032
(6) Veser, G.; Ziauddin, M.; Schmidt, L. D. Catal. Today 1999, 47,219. doi: 10.1016/S0920-5861(98)00302-2
(7) Siberova, B.; Fathi, M.; Holmen, A. Appl. Catal. A-Gen. 2004,276, 17. doi: 10.1016/j.apcata.2003.10.044
(8) Goetsch, D. A.; Schmidt, L. D. Science 1996, 271, 1560.doi: 10.1126/science.271.5255.1560
(9) Chatterjee, D.; Deutschmann, O.;Warnatz, J. Faraday Discuss.2001, 119, 371. doi: 10.1039/b101968f
(10) Maruta, K. Proc. Combust. Inst. 2011, 33, 125. doi: 10.1016/j.proci.2010.09.005
(11) Ju, Y. G.; Maruta, K. Prog. Energ. Combust. 2011, 37, 669.doi: 10.1016/j.pecs.2011.03.001
(12) Dunn-Rankin, D.; Leal, E. M.;Walther, D. C. Progress inEnergy and Combustion Science 2005, 31, 422. doi: 10.1016/j.pecs.2005.04.001
(13) Kaisare, N. S.; Vlachos, D. G. Prog. Energ. Combust. 2012, 38,321. doi: 10.1016/j.pecs.2012.01.001
(14) Zhong, B. J.;Wang, J. H. Combust. Flame 2010, 157, 222
(15) Zhong, B. J.; Hong, Z. K. Heat and Power Engineering 2003,18, 584. [钟北京, 洪泽恺. 热能动力工程, 2003, 18, 584.]
(16) Zhong, B. J.; Yang, Q. T.; Yang, F. Combust. Flame 2010, 157,2005. doi: 10.1016/j.combustflame.2010.06.014
(17) Wolf, M.; Deutchmann, O.; Behrendt, F.;Warnatz, J. Catal. Lett.1999, 61, 15. doi: 10.1023/A:1019039931310
(18) Brady, K.; Sung, C. J.; T'ien, J. Int. J. Hydrog. Energy 2010,35, 11412. doi: 10.1016/j.ijhydene.2010.07.105
(19) Maruta, K.; Takeda, K.; Ahn, J.; Borer, K.; Sitzki, L.; Ronney, P.D.; Deutschmann, O. Proc. Combust. Inst. 2002, 29, 957.doi: 10.1016/S1540-7489(02)80121-3
(20) Norton, D. G.;Wetzel, E. D.; Vlachos, D. G. Ind. Eng. Chem.Res. 2004, 43, 4833. doi: 10.1021/ie049798b
(21) Deutschmann, O.; Maier, L. I.; Riedel, U.; Stroemman, A. H.;Dibble, R.W. Catal. Today 2000, 59, 141. doi: 10.1016/S0920-5861(00)00279-0
(22) Zhong, B. J.; Yang, F. Int. J. Hydrog. Energy 2012, 37, 8716.doi: 10.1016/j.ijhydene.2012.02.042
(23) Norton, D. G.; Vlachos, D. G. Proc. Combust. Inst. 2005, 30,2473. doi: 10.1016/j.proci.2004.08.188
(24) Xiong, P. F.; Zhong, B. J.; Yang, F. Acta Phys. -Chim. Sin. 2011,27, 2200. [熊鹏飞, 钟北京, 杨帆. 物理化学学报, 2011, 27,2200.] doi: 10.3866/PKU.WHXB20110927
(25) Tischer, S.; Correa, C.; Deutschmann, O. Catal. Today 2001, 69,57. doi: 10.1016/S0920-5861(01)00355-8

[1] Shan-Fu LU,Si-Kan PENG,Yan XIANG. Perspectives on the Research Progress of Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1859-1865.
[2] Hong ZHU,Ming-Chuan LUO,Ye-Zheng CAI,Zhao-Nan SUN. Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2462-2474.
[3] XIONG Peng-Fei, ZHONG Bei-Jing, YANG Fan. Heterogeneous Mechanism of C1-C4 on a Platinum Catalyst[J]. Acta Phys. -Chim. Sin., 2011, 27(09): 2200-2208.
[4] Han Zuo-Qing,Si Yong-Chao,Chen Yan-Xi,Yang Lan-Sheng. Study on the Performance of Nafion-bonded Oxygen Electrode in PEMFC[J]. Acta Phys. -Chim. Sin., 1997, 13(05): 432-437.