Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (05): 966-972    DOI: 10.3866/PKU.WHXB201302281
ELECTROCHEMISTRY AND NEW ENERGY     
Effect of Carbon Aerogel Activation on Electrode Lithium Insertion Performance
LIU Nian-Ping, SHEN Jun, GUAN Da-Yong, LIU Dong, ZHOU Xiao-Wei, LI Ya-Jie
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Institute of Physical Science and Engineering of Tongji University, Shanghai 200092, P. R. China
Download:   PDF(926KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Carbon aerogels have received much recent attention as high-capacity insertion anodes for rechargeable lithium ion batteries. Carbon aerogels were synthesized from resorcinol-formaldehyde with a sodium carbonate catalyst via a sol-gel process, ambient drying, carbonization, and activation. Gaseous CO2-activated carbon aerogels combined the advantages of amorphous and nanoporous structures, with richer porous structures and more lithium insertion points than conventional carbon aerogels. Microporosity analysis indicated a high surface area, and the pore volume effectively retained lithium and its compounds. The mesoporosity allowed the mass transport of Li+ and conferred high ionic conductivity to the electrode. These improvements led to a higher lithium insertion capacity, and the activated carbon aerogel exhibited a specific surface area of 2032 m2·g-1. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed an amorphous structure and nanoparticle network skeleton, respectively. Lithium insertion capacities of 3870 and 352 mAh·g-1 were exhibited in the 1st and 50th galvanostatic discharge-charge (50 mA·g-1) cycles, respectively. This corresponded to irreversible capacities of 658 and 333 mAh·g-1, respectively. This work demonstrates the feasibility of CO2 activation for improving lithium insertion performance in carbon aerogels, and provides preparation and optimization procedures for other porous electrode materials.



Key wordsCarbon aerogel      Sol-gel      Gas activation      Amorphous carbon      Lithium ion battery     
Received: 12 November 2012      Published: 28 February 2013
MSC2000:  O646  
  O648  
Fund:  

The project was supported by the National Natural Science Foundation of China (51072137, 50802064, 11074189), Key Projects in the National Science & Technology Pillar Program, China (2009BAC62B02), and Shanghai Committee of Science and Technology, China (11nm0501600).

Cite this article:

LIU Nian-Ping, SHEN Jun, GUAN Da-Yong, LIU Dong, ZHOU Xiao-Wei, LI Ya-Jie. Effect of Carbon Aerogel Activation on Electrode Lithium Insertion Performance. Acta Phys. Chim. Sin., 2013, 29(05): 966-972.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201302281     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I05/966

(1) Wildgoose, G. G.; Leventis, H. C.; Simm, A. O.; Jones, J. H.;Compton, R. G. Chem. Commun. 2005, 3694.
(2) Tamai, H.; Sumi, T.; Yasuda, H. J. Colloid Interface Sci. 1996,177, 325.
(3) Gong, Q.;Wang, H.; Liao, X. Z.; Ma,W.; He, Y. S.; Ma, Z. F.Acta Phys. -Chim. Sin. 2012, 28, 100. [龚强, 王红, 廖小珍, 麻微, 何雨石, 马紫峰. 物理化学学报, 2012, 28, 100.]doi: 10.3866/PKU.WHXB201228100
(4) Ikeda, S.; Ishino, S.; Harada, T.; Okamoto, N.; Sakata, T.; Mori,H.; Kuwabata, S.; Torimoto, T.; Matsumura, M. Angew. Chem.Int. Edit. 2006, 45, 7063.
(5) Pekala, R.W. J. Mater. Sci. 1989, 24, 3221. doi: 10.1007/BF01139044
(6) Kim, H. J.; Kim, J. H.; Kim,W. I.; Suh, D. J. Korean J. Chem.Eng. 2005, 22, 740. doi: 10.1007/BF02705792
(7) Mayer, S. T.; Pekala, R.W.; Kaschmitter, J. L. J. Electrochem.Soc. 1993, 140, 446. doi: 10.1149/1.2221066
(8) Lu, X.; Caps, R.; Fricke, J.; Alviso, C. T.; Pekala, R.W.J. Non-Cryst. Solids 1995, 188, 226. doi: 10.1016/0022-3093(95)00191-3
(9) Probstle, H.; Schmitt, C.; Frick, J. J. Power Sources 2002, 105,189. doi: 10.1016/S0378-7753(01)00938-7
(10) Ping, L. N.; Zheng, J. M.; Shi, Z. Q.;Wang, C. Y. ActaPhys. -Chim. Sin. 2012, 28, 1733. [平丽娜, 郑嘉明, 时志强,王成扬. 物理化学学报, 2012, 28, 1733.] doi: 10.3866/PKU.WHXB201205092
(11) Le, D. B.; Passerini, S.; Guo, J.; Ressler, J.; Owens, B. B.;Smyrl,W. H. J. Electrochem. Soc. 1996, 143, 2099. doi: 10.1149/1.1836965
(12) Xu, K.; Shen, L. F.; Mi, C. H.; Zhang, X. G. Acta Phys. -Chim.Sin. 2012, 28, 105. [徐科, 申来法, 米常焕, 张校刚. 物理化学学报, 2012, 28, 105.] doi: 10.3866/PKU.WHXB201228105
(13) Gao,W. C.; Huang, T.; Shen, Y. D.; Yu, A. S. Acta Phys. -Chim.Sin. 2011, 27, 2129. [高文超, 黄桃, 沈宇栋, 余爱水. 物理化学学报, 2011, 27, 2129.] doi: 10.3866/PKU.WHXB20110933
(14) Slides, C. R.; Li, N. C.; Patrissi, C. J.; Scrosati, B.; Martin, C. R.MRS Bulletin 2002, 8, 604.
(15) Zhang, D.W.; Zhao, Y. B.; Goodenough, J. B.; Lu, Y. H.; Chen,C. H.;Wang, L.; Liu, J.W. Electrochem. Commun. 2011, 13,125. doi: 10.1016/j.elecom.2010.11.031
(16) Tanaike, O.; Aoike, S.; Ohno, H.; Hatori, H.; Yamada, Y.Materials Science and Engineering B 2008, 148, 237. doi: 10.1016/j.mseb.2007.09.001
(17) Skowronski, J. M.; Knofczynski, K. J. Power Sources 2009,194, 81. doi: 10.1016/j.jpowsour.2009.04.048
(18) Kunowsky, M.; Marco-Lozar, J. P.; Oya, A.; Linares-Solano, A.Carbon 2012, 50, 407.
(19) Liu, H. Y.;Wang, K. P.; Teng, H. S. Carbon 2005, 43, 559. doi: 10.1016/j.carbon.2004.10.020
(20) Liu, N. P.; Shen, J.; Liu, D. Microporous Mesoporous Mat.2013, 167, 176. doi: 10.1016/j.micromeso.2012.09.009
(21) Pekala, R.W.; Farmer, J. C.; Alviso, C. T.; Tram, T. D.; Mayer,S. T.; Miller, J. M.; Dunn, B. J. Non-Cryst. Solids 1998, 225, 74.doi: 10.1016/S0022-3093(98)00011-8
(22) Xu, J. J.; Yang, J. Electrochem. Commun. 2003, 5, 230. doi: 10.1016/S1388-2481(03)00024-9
(23) Probstle, H.;Wiener, M.; Fricke, J. J. Porous Mater. 2003, 10,213. doi: 10.1023/B:JOPO.0000011381.74052.77
(24) Wu, D. C.; Fu, R.W.; Zhang, S. T.; Dresselhaus, M. S.;Dresselhaus, G. Carbon 2004, 42, 2033. doi: 10.1016/j.carbon.2004.04.003
(25) Wei, Y. Z.; Fang, B.; Iwasa, S.; Kumagai, M. J. Power Sources2005, 141, 386. doi: 10.1016/j.jpowsour.2004.10.001
(26) Antonio, B.; Pico, F.; Rojo, J. M. J. Power Sources 2004, 133,329. doi: 10.1016/j.jpowsour.2004.02.013
(27) Tarazona, P. Surf. Sci. 1995, 331, 989. doi: 10.1016/0039-6028(95)00170-0
(28) Sing, K. S.W.; Everett, D. H.; Haul, R. A.W.; Moscou, L.;Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl.Chem. 1985, 57, 603. doi: 10.1351/pac198557040603
(29) Bonino, F.; Brutti, S.; Piana, M.; Natale, S.; Scrosati, B.;Gherghel, L.; Mullen, K. Electrochim. Acta 2006, 51, 3407. doi: 10.1016/j.electacta.2005.09.036
(30) Giraudet, J.; Dubois, M.; Inacio, J.; Hamwi, A. Carbon 2003,41, 453. doi: 10.1016/S0008-6223(02)00341-X
(31) Besenhard, J. O.;Winter, M.; Yang, J.; Biberacher,W. J. PowerSources 1995, 54, 228. doi: 10.1016/0378-7753(94)02073-C
(32) Aurbach, D.; Eineli, Y. J. Electrochem. Soc. 1995, 142, 1746.doi: 10.1149/1.2044188
(33) Aurbach, D.; Markovsky, B.;Weissman, I.; Levi, E.; Ein-Eli, Y.Electrochim. Acta 1999, 45, 67. doi: 10.1016/S0013-4686(99)00194-2
(34) Zoo, G. F.; Zhang, D.W.; Dong, C.; Li, H.; Xiong, K.; Fei, L.F.; Qian, Y. T. Carbon 2006, 44, 2277.
(35) Wu, G. T.;Wang, C. S.; Zhang, X. B.; Yang, H. S.; Qi, Z. F.; He,P. M.; Li,W. Z. J. Electrochem. Soc. 1999, 5, 1696.
(36) Zhao, J.; Gao, Q. Y.; Gu, C.; Yang, Y. Chem. Phys. Lett. 2002,358, 77. doi: 10.1016/S0009-2614(02)00580-8
(37) Yang, Z. H.;Wu, H. Q. Solid State Ionics 2001, 143, 173. doi: 10.1016/S0167-2738(01)00852-9
(38) Flandrois, S.; Simon, B. Carbon 1999, 37, 165. doi: 10.1016/S0008-6223(98)00290-5
(39) Lee, H. Y.; Baek, J. K.; Jang, S.W. J. Power Sources 2001, 101,206. doi: 10.1016/S0378-7753(01)00671-1

[1] LIU Qing-Kang, SONG Wen-Ping, HUANG Qi-Tao, ZHANG Guang-Yu, HOU Zhen-Xiu. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2472-2479.
[2] ZHANG Xiao-Ru, XU Yue-Feng, SHEN Shou-Yu, CHEN Yuan, HUANG Ling, LI Jun-Tao, SUN Shi-Gang. Reduced Graphene Oxide-LaFeO3 Composite Nanomaterials as Bifunctional Catalyst for Rechargeable Lithium-Oxygen Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2237-2244.
[3] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2261-2267.
[4] LI Ya-Dong, DENG Yu-Feng, PAN Zhi-Yi, WEI Yin-Ping, ZHAO Shi-Xi, GAN Lin. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2293-2300.
[5] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[6] GUO Xing-Zhong, DING Li, YU Huan, SHAN Jia-Qi, YANG Hui. Construction and Preparation Mechanism of Hierarchically Porous SiO2 Monoliths[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1727-1733.
[7] WANG Rui-Fen, WANG Fu-Ming, SONG Jin-Ling, AN Sheng-Li, WANG Xin. Synthesis and Photocatalytic Activities of Rare Earth-Boron Co-Doped Slice Layer TiO2[J]. Acta Phys. Chim. Sin., 2016, 32(2): 536-542.
[8] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. Chim. Sin., 2016, 32(2): 573-580.
[9] LI Ya-Jie, NI Xing-Yuan, SHEN Jun, LIU Dong, LIU Nian-Ping, ZHOU Xiao-Wei . Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 493-502.
[10] ZHU Shou-Pu, WU Tian, SU Hai-Ming, QU Shan-Shan, XIE Yong-Juan, CHEN Ming, DIAO Guo-Wang. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2737-2744.
[11] SUN Xiao-Fei, XU You-Long, ZHENG Xiao-Yu, MENG Xiang-Fei, DING Peng, REN Hang, LI Long. Triple-Cation-Doped Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1513-1520.
[12] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1437-1451.
[13] ZENG Yu-Qun, GUO Yong-Sheng, WU Bing-Bin, HONG Xiang, WU Kai ZHONG, Kai-Fu. Synthesis and Electrochemical Performance of Plastic Crystal Compound-Based Ionic Liquid[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1351-1358.
[14] HUANG Zhi-Peng, GUO Lin-Yu, GUO Chao, ZHAO Meng-Meng, WANG Xue-Hua, JIN Zhao, LUO Jin-Hua, WANG Xin, FENG Ji-Jun. Synthesis of Fluorinated Polyanionic Lithium Ion Insertion/Extraction Material LiVPO4F/C by Carbon Thermal Reduction Assisted Sol-Gel Method[J]. Acta Phys. Chim. Sin., 2015, 31(4): 700-706.
[15] CHEN Feng-Ying, XIAO Li, YANG Cui-Xia, ZHUANG Lin. Preparation and Electrocatalytic Properties of Perovskite Type Oxides CaVO3 for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2015, 31(12): 2310-2315.