Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (05): 937-945    DOI: 10.3866/PKU.WHXB201303081
Adsorption and Dissociation of Water on HfO2(111) and (110) Surfaces
LI Lu1, LI Yi1, GUO Xin2, ZHANG Yong-Fan1, CHEN Wen-Kai1,3
1 Department of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China;
2 States Key Laboratory of Coal combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 410074, P. R. China;
3 Fujian Provincial Key Laboratory of Photocatalysis-State Key Laboratory Breeding Base, Fuzhou University, Fuzhou 350002, P. R. China
Download:   PDF(1134KB) Export: BibTeX | EndNote (RIS)      


First-principles calculations based on density functional theory (DFT) with the generalized gradient approximation (GGA-PW91) have been used to investigate the adsorption and dissociation of H2O molecules on HfO2(111) and (110) surfaces at different sites with different coverages. It was found that the surface hafnium atom was the active adsorption position of the (111) and (110) surfaces when compared different adsorption energies and various geometrical parameters. Adsorption energies of water on the HfO2 (111) and (110) surfaces varied slightly as the coverage increased. It was shown that the most favorable configuration of H2O on the HfO2(111) and (110) surfaces corresponded to the coordination of H2O via its oxygen to a surface hafnium atom. Adsorption geometries, Mulliken population charges, density of states, and frequency calculations for HfO2-OH, HfO2-O, and HfO2-H at both surfaces were also carried out. The results showed that the hydroxyl group interacted with the surface by its oxygen atom to surface hafnium atoms. Isolated oxygen atoms bound to surface hafnium and oxygen atoms, while hydrogen atoms interact only with surface oxygen atoms to form hydroxyl groups. For the dissociation reaction, according to transition searching, H2O→H (ads)+OH (ads). The energy barriers were endothermic by 9.7 and 17.3 kJ· mol-1 for the (111) surfaces and exothermic by -59.9 and -47.6 kJ·mol-1 for the (110) surfaces.

Key wordsDdensity functional theory      HfO2      H2O molecule      Adsorption      Dissociation     
Received: 12 November 2012      Published: 08 March 2013
MSC2000:  O647  

The project was supported by the Natural Science Foundation of Fujian Province, China (2012J01032, 2012J01041) and Foundation of State Key Laboratory of Coal Combustion of Huazhong University of Science and Technology, China (FSKLCC1110).

Cite this article:

LI Lu, LI Yi, GUO Xin, ZHANG Yong-Fan, CHEN Wen-Kai. Adsorption and Dissociation of Water on HfO2(111) and (110) Surfaces. Acta Phys. Chim. Sin., 2013, 29(05): 937-945.

URL:     OR

(1) Lee, S. J.; Jeon, T. S.; Kwong, D. L.; Clark, R. J. Appl. Phys.2002, 92, 2807. doi: 10.1063/1.1500420
(2) Wilk, G. D.;Wallace, R. M.; Anthony, J. M. J. Appl. Phys. 2001,89, 5243. doi: 10.1063/1.1361065
(3) Yeo, Y.; King, T.; Hu, C. J. Appl. Phys. 2002, 92, 7266. doi: 10.1063/1.1521517
(4) Aarik, J.; Mandar, H.; Kirm, M.; Pung, L. Thin Solid Films2004, 466, 41. doi: 10.1016/j.tsf.2004.01.110
(5) Terki, R.; Feraoun, H.; Bertrand, G.; Aourag, H. Comput. Mater.Sci. 2005, 33, 44. doi: 10.1016/j.commatsci.2004.12.059
(6) Cockayn, E. Phys. Rev. B 2007, 75, 094103. doi: 10.1103/PhysRevB.75.094103
(7) Mavrou, G.; Galata, S.; Tsipas, P.; Sotiropoulos, A.;Panayiotatos, Y.; Dimoulas, A.; Evangelou, E. K.; Seo, J.W.;Dieker, C. J. Appl. Phys. 2008, 103, 014506.
(8) Atashi, B. M.; Javier, F. S.; Charles, B. M. Phys. Rev. B 2006,73, 115330. doi: 10.1103/PhysRevB.73.115330
(9) Ryshkewitch, E.; Richerson, D.W. Oxide Ceramics, PhysicalChemistry and Technology; Academic: Floride, 1985.
(10) Waldorf, A. J.; Dobrowolski, J. A.; Sullivan, B. T.; Plante, L. M.Appl. Opt. 1993, 32, 5583. doi: 10.1364/AO.32.005583
(11) He, G.; Zhu, L. Q.; Liu, M.; Zhang, Q. Appl. Surf. Sci. 2007,253, 3413. doi: 10.1016/j.apsusc.2006.07.055
(12) Mukhopadhyay, A. B.; Musgrave, C. B.; Sanz, J. F. J. Am.Chem. Soc. 2008, 130, 11996. doi: 10.1021/ja801616u
(13) Biercuk, M. J.; Mason, N.; Marcus, C. M. Nano Lett. 2004, 4, 1.
(14) Widjaja, Y.; Musgrave, C. B. J. Chem. Phys. 2002, 117, 1931.doi: 10.1063/1.1495847
(15) Alam, M. A.; Green, M. L. J. Appl. Phys. 2003, 94, 3403. doi: 10.1063/1.1599978
(16) Fihol, J. S.; Neurock, M. Angew. Chem. Int. Edit. 2006, 45, 402.doi: 10.1002/(ISSN)1521-3773
(17) Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M. J. Am. Chem.Soc. 2008, 130, 1402. doi: 10.1021/ja0768237
(18) Phatak, A. A.; Delgass,W. N.; Riberiro, F. H.; Scheider,W. F.J. Phys. Chem. C 2009, 113, 7269. doi: 10.1021/jp810216b
(19) Zhang, J. L.;Wang, C.; Fu, Y.; Che, Y. C.; Zhou, C.W. ACSNano 2011, 5, 3284. doi: 10.1021/nn2004298
(20) Javey, A.; Guo, J.; Farmer, D. B.;Wang, Q. Nano Lett. 2004, 4,447. doi: 10.1021/nl035185x
(21) Wang, T.; Ekerdt, J. G. Chem. Mater. 2009, 21, 3096. doi: 10.1021/cm9001064
(22) Iskandarova, I. M.; Knizhnik, A. A.; Rykova, E. A.;Bagaturyants, A. A.; Potapkin, B. V.; Korkin, A. A.Microelectron. Eng. 2003, 69, 587. doi: 10.1016/S0167-9317(03)00350-2
(23) Atashi, B.; Mukhopadhyay, J. F. S.; Musgrave, C. B. Chem.Mater. 2006, 18, 3397. doi: 10.1021/cm060679r
(24) Serge, V.; Navrotsky, U. A. Appl. Phys. Lett. 2005, 87, 164103.doi: 10.1063/1.2108113
(25) Fang, Z. F.; Outlaw, M. D.; Smith, K. K.; Gist, N.; Li, S. G.;Dixon, D. A. J. Phys. Chem. C 2012, 116, 8475.
(26) Jung, C.; Koyama, M.; Kubo, M.; Imamura, A.; Miyamoto, A.Appl. Surf. Sci. 2005, 244, 644. doi: 10.1016/j.apsusc.2004.10.141
(27) Yang, Y. L.; Lu, C. H.; Huang, J.; Li, Y.; Chen,W. K. Chin. J.Catal. 2009, 30, 328. [杨亚丽, 陆春海, 黄娟, 李奕, 陈文凯. 催化学报, 2009, 30, 328.]
(28) Chen, G. H.; Hou, Z. F.; Gong, X. G. Comput. Mater. Sci. 2008,44, 46. doi: 10.1016/j.commatsci.2008.01.051
(29) Caravaca, M. A.; Casali, R. A. J. Phys., Condens. Matter. 2005,17, 5795. doi: 10.1088/0953-8984/17/37/015
(30) Rignanese, G. M.; Gonze, X.; Jun, G..; Cho, K.; Pasquarello, A.Phys. Rev. B 2004, 69, 4301.
(31) Demkov, A. A. Phys. Status Solidi B 2001, 26, 57.
(32) Wang, J.; Li, H.; Stevens, R. J. Mater. Sci. 1992, 27, 5397. doi: 10.1007/BF00541601
(33) Delly, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452
(34) Delly, B. J. Chem. Phys.2000, 113, 7756. doi: 10.1063/1.1316015
(35) Perdew, J. P.;Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244
(36) Du, Y. D.; Zhao,W. N.; Guo, X.; Zhang, Y. F.; Chen,W. K. ActaPhys. -Chim. Sin. 2011, 27, 1075. [杜玉栋, 赵伟娜, 郭欣,章永凡, 陈文凯. 物理化学学报, 2011, 27, 1075.] doi: 10.3866/PKU.WHXB20110444
(37) Sun, B. Z.; Chen,W. K.; Xu, Y. J. J. Phys. Chem. C 2010, 114,6543. doi: 10.1021/jp912075t
(38) Sun, B. Z.; Chen,W. K.; Xu, Y. J. J. Phys. Chem. C 2011, 115,5800. doi: 10.1021/jp111045t
(39) Verlusi, L.; Zeigler, T. Chem. Phys. 1988, 88, 322.
(40) Ortmann, F.; Bechstedt, F.; Schmidt,W. G. Phys. Rev. B 2006,73, 5101.
(41) Halgren, T. A.; Lipscomb,W. N. Chem. Phys. Lett. 1977, 49,225. doi: 10.1016/0009-2614(77)80574-5
(42) Ma, M.; Zhang, X.; Peng. L. L.;Wang, J. B. Tetrahedron Lett.2007, 48, 1095. doi: 10.1016/j.tetlet.2006.12.090
(43) Ziolek, M.; Kujawa, J.; Saur, O.; Lavalley, J. C. J. Mol. Catal.A: Chem. 1995, 97, 49. doi: 10.1016/1381-1169(94)00068-9
(44) Xu, H.; Zhang, R. Q.; Ng, A. M. C.; Djurisic, A. B.; Chan, H. T.;Chan,W. K.; Tong, S. Y. J. Phys. Chem. C 2011, 115, 19710.doi: 10.1021/jp2032884
(45) Bandura, A. V.; Kubicki, J. D.; Sofo, J. O. J. Phys. Chem. B2008, 112, 11616. doi: 10.1021/jp711763y
(46) Batzill, M.; Bergermayer,W.; Tanaka, I.; Diebold, U. Surf. Sci.Lett. 2006, 600, 29. doi: 10.1016/j.susc.2005.11.034
(47) Bustamanta, M.; Valencia, I.; Castro, M. J. Phys. Chem. A 2011,115, 4115. doi: 10.1021/jp108503e
(48) Paul, J.; Hoffmann, F. M. J. Phys. Chem. 1986, 90, 5321. doi: 10.1021/j100412a083

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[3] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[4] ZOU Jing-Xiang, SHEN Jun, XU En-Hua, FANG Tao, LI Shu-Hua. Multireference Perturbation Theory and Multireference Coupled Cluster Theory Based on the “Block-Correlation” Framework[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1277-1287.
[5] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[6] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[7] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[8] LIU Ning-Liang, SHEN Huan. Multiphoton Dissociation and Ionization Dynamics of Allyl Chloride Using Femtosecond Laser Pulses[J]. Acta Phys. Chim. Sin., 2017, 33(3): 500-505.
[9] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[10] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[11] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[12] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[13] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[14] WU Xiang-Kun, GAO Zhi, YU Tong-Po, ZHOU Xiao-Guo, LIU Shi-Lin . S(3P) Fragmentation Channel of Carbonyl Sulfide at 230 nm[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2004-2012.
[15] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2264-2270.