Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (06): 1313-1318    DOI: 10.3866/PKU.WHXB201303141
CATALYSIS AND SURFACE SCIENCE     
Hydrothermal Synthesis and Activity of NiS-PdS/CdS Catalysts for Photocatalytic Hydrogen Evolution under Visible Light Irradiation
LIN Pei-Bin, YANG Yu, CHEN Wei, GAO Han-Yang, CHEN Xiao-Ping, YUAN Jian, SHANGGUAN Wen-Feng
Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Download:   PDF(812KB) Export: BibTeX | EndNote (RIS)      

Abstract  

To improve the solar energy transformation efficiency, it is necessary to study the efficiency of photocatalysts under visible light irradiation. In this study, the composite photocatalyst NiS-PdS/CdS has been developed using a hydrothermal method from the raw materials cadmium sulfide, palladium chloride, nickel acetate and thiourea. The characteristics of NiS-PdS/CdS were studied by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. In addition, the photocatalytic activities for water splitting were tested using lactic acid as the sacrificial reagent. The results showed that NiS and PdS dispersed well on the surface of CdS. The activity of NiS-PdS/CdS was much higher than that of CdS under visible light irradiation. When the loading amount of NiS and PdS reached 1.5% and 0.41% (w), respectively, NiS-PdS/ CdS showed the highest activity. The H2 evolution rate increased up to 6556 μmol·h-1, which was six times higher than that of unloaded CdS and nearly two times higher than that of NiS/CdS. The apparent quantum yield was 47.5% (λ=420 nm). The co-catalysts NiS and PdS prompted the transfer of photogenerated electrons and holes, respectively. Compared with single-loading, co-loading the two co-catalysts could transfer and separate charge carriers more efficiently, resulting in enhancement of the activity for photocatalytic hydrogen production.



Key wordsNiS-PdS/CdS      Hydrothermal method      Co-loading      Photocatalysis      Hydrogen energy     
Received: 07 January 2013      Published: 14 March 2013
MSC2000:  O643  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2009CB220000), National High Technology Research and Development Program of China (863) (2012AA051501), and International Cooperation Project of Shanghai Municipal Science and Technology Commission, China (12160705700).

Cite this article:

LIN Pei-Bin, YANG Yu, CHEN Wei, GAO Han-Yang, CHEN Xiao-Ping, YUAN Jian, SHANGGUAN Wen-Feng. Hydrothermal Synthesis and Activity of NiS-PdS/CdS Catalysts for Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Acta Phys. Chim. Sin., 2013, 29(06): 1313-1318.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201303141     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I06/1313

(1) Osterloh, F. E. Chem. Mater. 2008, 20, 35. doi: 10.1021/cm7024203
(2) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g
(3) Maeda, K.; Domen, K. J. Phys. Chem. C 2007, 111, 7851 doi: 10.1021/jp070911w
(4) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125,3082. doi: 10.1021/ja027751g
(5) Chen,W.; Gao, H. Y.; Yang, Y.; Lin, P. B.; Yuan, J.; Shangguan,W. F.; Su, J. C.; Sun, Y. Z. Acta Phys. -Chim. Sin. 2012, 28,2911. [陈威, 高寒阳, 杨俞, 林培宾, 袁坚, 上官文峰,苏佳纯, 孙洋洲. 物理化学学报, 2012, 28, 2911.] doi: 10.3866/PKU.WHXB201208011
(6) Murphy, A. B.; Barnes, P. R. F.; Randeniya, L. K.; Plumb, I. C.;Grey, I. E.; Horne, M. D.; Glasscock, J. A. Int. J. Hydrog. Energy 2006, 31, 1999. doi: 10.1016/j.ijhydene.2006.01.014
(7) Chen, X. P.; Shangguan,W. F. Front. Energy doi: 10.1007/s11708-012-0228-4
(8) Wen, F. Y.; Yang, J. H.; Zong, X.; Ma, Y.; Xu, Q.; Ma, B. J.; Li,C. Progress in Chemistry 2009, 21, 2285. [温福宇, 杨金辉,宗旭, 马艺, 徐倩, 马保军, 李灿. 化学进展, 2009, 21,2285.]
(9) Williams, R. J. Chem. Phys. 1960, 32, 1505. doi: 10.1063/1.1730950
(10) Sathish, M.; Viswanathan, B.; Viswanath, R. P. J. Hydrog. Energy 2006, 31, 891. doi: 10.1016/j.ijhydene.2005.08.002
(11) Li, Y. X.; Xie, Y. Z.; Peng, S. Q.; Lu, G. X.; Li, S. B.Chemosphere 2006, 63, 1312. doi: 10.1016/j.chemosphere.2005.09.004
(12) Sakata, T.; Hashimoto, K.; Kawai, T. J. Phys. Chem. 1984, 88,5214
(13) Zong, X.; Han, J. F.; Ma, G. J.; Yan, H. J.;Wu, G. P.; Li, C.J. Phys. Chem. C 2011, 115, 12202. doi: 10.1021/jp2006777
(14) Zong, X.; Yan, H. J.;Wu, G. P.; Ma, G. J.;Wen, F. Y.;Wang, L.;Li, C. J. Am. Chem. Soc. 2008, 130, 7176. doi: 10.1021/ja8007825
(15) Yan, H. J.; Yang, J. H.; Ma, G. J.;Wu, G. P.; Zong, X.; Lei, Z.B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024
(16) Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K. Chem. Mater.2008, 20, 110. doi: 10.1021/cm7029344
(17) Zhang,W.;Wang, Y.;Wang, Z.; Zhong, Z.; Xu, R. Chem. Commun. 2010, 46, 7631. doi: 10.1039/c0cc01562h
(18) Harada, H.; Sakata, T.; Ueda, T. J. Am. Chem. Soc. 1985, 107,1773. doi: 10.1021/ja00292a060
(19) Lin, K.; Chuang, C.; Lee, Y.; Li, F.; Chang, Y. J. Phys. Chem. C2012, 116, 1550. doi: 10.1021/jp209353j
(20) Spanhel, L.;Weller, H.; Henglein, A. J. Am. Chem. Soc. 1987,109, 6632. doi: 10.1021/ja00256a012
(21) Hurum, D. C.; Agrios, A. G.; Gray, K. A. J. Phys. Chem. B2003, 107, 4545. doi: 10.1021/jp0273934
(22) Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001,414, 625. doi: 10.1038/414625a
(23) Assuncao, N.; Giz, M.; Tremiliosi, G.; Gonzalez, E.J. Electrochem. Soc. 1997, 144, 2794. doi: 10.1149/1.1837897
(24) Yang, J. H.; Yan, H. J.;Wang, X. L.;Wen, F. Y.;Wang, Z. J.;Fan, D. Y.; Shi, J. Y.; Li, C. J. Catal. 2012, 290, 151.
(25) Min, S. X.; Lü, G. X. Acta Phys. -Chim. Sin. 2011, 27, 2178.[敏世雄, 吕功煊. 物理化学学报, 2011, 27, 2178.] doi: 10.3866/PKU.WHXB20110904

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[3] YANG Kun, YAO Qi-Lu, LU Zhang-Hui, KANG Zhi-Bing, CHEN Xiang-Shu. Facile Synthesis of CuMo Nanoparticles as Highly Active and Cost-Effective Catalysts for the Hydrolysis of Ammonia Borane[J]. Acta Phys. Chim. Sin., 2017, 33(5): 993-1000.
[4] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[5] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[6] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[7] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[8] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[9] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[10] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[11] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[12] CHANG Jin-Fa, XIAO Yao, LUO Zhao-Yan, GE Jun-Jie, LIU Chang-Peng, XING Wei. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1556-1592.
[13] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[14] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.
[15] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.