Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (05): 889-896    DOI: 10.3866/PKU.WHXB201303151
REVIEW     
Recent Developments of Graphene Electrodes in Bioelectrochemical Systems
WANG Qiang1, HUANG Li-Ping1, YU Hong-Tao1, QUAN Xie1, CHEN Guo-Hua2
1 Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China;
2 Department of Chemical and Biomolecular Engineering, Kowloon, Hong Kong University of Science and Technology, Hong Kong, China
Download:   PDF(627KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Sustainable societies require development of cost-effective methods for harnessing energy from wastes and wastewater, and alternatively capturing this energy to make other useful chemicals with simultaneous wastes and wastewater treatment. Recently developed bioelectrochemical systems (BESs) that use microorganisms to catalyze different electrochemical reactions are promising for capturing the energy in wastes and wastewater for diverse purposes. A BES is called a microbial fuel cell (MFC) if electricity is generated and the Gibbs free energy change of the corresponding reaction is negative. Conversely, when the Gibbs free energy change of the overall reaction is positive, power needs to be supplied to drive this non-spontaneous reaction, and this BES is regarded as a microbial electrolysis cell (MEC). The electrode character is considered to be a key factor for triggering the applicable BESs. Graphene has been recently used as the electrode and investigated in BESs because of its unique structure and excellent properties. Here, an up-to-date review is provided on the recent research and development in BES-based graphene, particularly in MFC-based graphene. The recent pristine graphene, doped graphene, and supported graphene research in MFCs is described in detail. The potential applications of graphene in MECs and the scientific and technical challenges are also discussed.



Key wordsGraphene      Electrode      Bioelectrochemical system      Microbial fuel cell      Microbial electrolysis cell     
Received: 14 January 2013      Published: 15 March 2013
MSC2000:  O646  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2011CB936002), Natonal Natural Science Foundation of China (51178077, 21077017), and Specialized Research Fund for the Doctoral Program of Higher Education, China (20120041110026).

Cite this article:

WANG Qiang, HUANG Li-Ping, YU Hong-Tao, QUAN Xie, CHEN Guo-Hua. Recent Developments of Graphene Electrodes in Bioelectrochemical Systems. Acta Phys. Chim. Sin., 2013, 29(05): 889-896.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201303151     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I05/889

(1) Logan, B. E. Nat. Rev. Microbiol. 2009, 7 (5), 375. doi: 10.1038/nrmicro2113
(2) Logan, B. E. Appl. Microbiol. Biotechnol. 2010, 85 (6), 1665.doi: 10.1007/s00253-009-2378-9
(3) Logan, B. E.; Rabaey, K. Science 2012, 337 (6095), 686. doi: 10.1126/science.1217412
(4) Wei, J.; Liang, P.; Huang, X. Bioresour. Technol. 2011, 102 (20),9335. doi: 10.1016/j.biortech.2011.07.019
(5) Zhou, M. H.; Chi, M. C.; Luo, J. M.; He, H. H.; Jin, T. J. PowerSources 2011, 196 (10), 4427. doi: 10.1016/j.jpowsour.2011.01.012
(6) Jiang, L. L.; Lu, X. J. Funct. Mater. 2012, 23 (43), 2881. [姜丽丽, 鲁雄. 功能材料, 2012, 23 (43), 2881.]
(7) Sun, Y. Q.;Wu, Q.; Shi, G. Q. Energy Environ. Sci. 2011, 4 (4),1113. doi: 10.1039/c0ee00683a
(8) Wang, H.; Hu, Y. H. Energy Environ. Sci. 2012, 5 (8), 8182. doi: 10.1039/c2ee21905k
(9) Huang, C. C.; Li, C. H.; Shi, G. Q. Energy Environ. Sci. 2012, 5 (10), 8848. doi: 10.1039/c2ee22238h
(10) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. ActaPhys. -Chim. Sin. 2010, 26 (8), 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2012, 26 (8), 2073.] doi: 10.3866/PKU.WHXB20100812
(11) Wu, J. J.;Wang, Y.; Zhang, D.; Hou, B. R. J. Power Sources2011, 196 (3), 1141. doi: 10.1016/j.jpowsour.2010.07.087
(12) Xiao, L.; Damien, J.; Luo, J. Y.; Jang, H. D.; Huang, J. X.; He,Z. J. Power Sources 2012, 208 (1), 187.
(13) Li, S. Z.; Hu, Y. Y.; Xu, Q.; Sun, J.; Hou, B.; Zhang, Y. P.J. Power Sources 2012, 213 (1), 265.
(14) Zhang, Y. Z.; Mo, G. Q.; Li, X.W.; Ye, J. S. J. Power Sources2012, 197 (1), 93.
(15) Wen, Q.;Wang, S. Y.; Yan, J.; Cong, L. J.; Pan, Z. C.; Ren, Y.M.; Fan, Z. G. J. Power Sources 2012, 216 (1), 187.
(16) Ahmed, M. S.; Jeon, S. J. Power Sources 2012, 218 (1), 168.
(17) Liu, J.; Qiao, Y.; Guo, C. X.; Lim, S.; Song, H.; Li, C. M.Bioresour. Technol. 2012, 114 (1), 275.
(18) Palaniselvam, T.; Aiyappa, H. B.; Kurungot, S. J. Mater. Chem.2012, 22 (45), 23799. doi: 10.1039/c2jm35128e
(19) Yang, Z.; Yao, Z.; Fang, G. Y.; Nie, H. G.; Liu, Z.; Zhou, X. M.;Chen, X. A.; Huang, S. M. J. Am. Chem. Soc. 2012, 6 (1), 205.
(20) Wu, J. J.; Zhang, D.;Wang, Y.;Wan, Y.; Hou, B. R. J. PowerSources 2012, 198 (1), 122.
(21) Shi, Y. S.; Li, X. H.; Ning, Q. J. Electron. Compon. Mater. 2010,29 (8), 70. [史永胜, 李雪红, 宁青菊. 电子元件与材料, 2010,29 (8), 70.]
(22) Fu, Q.; Bao, X. H. Chin. Sci. Bull. 2009, 54 (18), 2657. [傅强, 包信和. 科学通报, 2009, 54 (18), 2657.] doi: 10.1360/972009-1537
(23) Zhang, Y. Z.; Mo, G. Q.; Li, X.W.; Zhang,W. D.; Zhang, J. Q.;Ye, J. S.; Huang, X. D.; Yu, C. Z. J. Power Sources 2011, 196 (13), 5402. doi: 10.1016/j.jpowsour.2011.02.067
(24) Salas, E. C.; Sun, Z.; Luttge, A.; Tour, J. M. ACS Nano 2010, 4 (8), 4852. doi: 10.1021/nn101081t
(25) Wang, G. M.; Qian, F.; Saltikov, C.W.; Jiao, Y. Q.; Li, Y. NanoRes. 2011, 4, 563. doi: 10.1007/s12274-011-0112-2
(26) Yuan, Y.; Zhou, S. G.; Zhao, B.; Zhuang, L.;Wang, Y. Q.Bioresour. Technol. 2012, 116 (1), 453.
(27) Zhuang, L.; Yuan, Y.; Yang, G. Q.; Zhou, S. G. Electrochem.Commun. 2012, 21 (1), 69.
(28) Huang, Y. X.; Liu, X.W.; Xie, J. F.; Sheng, G. P.;Wang, G. Y.;Zhang, Y. Y.; Xu, A.W.; Yu, H, Q. Chem. Commun. 2011, 47 (20), 5795. doi: 10.1039/c1cc10159e
(29) Xie, X.; Yu, G. H.; Liu, Z. N.; Criddle, C. S.; Cui, Y. EnergyEnviron. Sci. 2012, 5 (5), 6862. doi: 10.1039/c2ee03583a
(30) Xie, P. Y.; Zhuang, G. L.; Lü, Y. A.;Wang, J. G.; Li, X. N. ActaPhys. -Chim. Sin. 2012, 28 (2), 331. [谢鹏洋, 庄桂林, 吕永安, 王建国, 李小年. 物理化学学报, 2012, 28 (2), 331.] doi: 10.3866/PKU.WHXB201111021
(31) Hou, J. X.; Liu, Z. L.; Zhang, P. Y. J. Power Sources 2013, 224 (1), 139.
(32) He, Z. M.; Liu, J.; Qiao, Y.; Li, C. M.; Tan, T. T. Y. Nano Lett.2012, 12 (9), 4738. doi: 10.1021/nl302175j
(33) Feng, L. Y.; Chen, Y. G.; Chen, L. ACS Nano 2011, 5 (12), 9611.doi: 10.1021/nn202906f
(34) Gurunathan, S.; Han, J.W.; Dayem, A. A.; Eppakayala, V.; Kim,J. N. Int. J. Nanomed. 2012, 7 (1), 5901.
(35) Agarwal, S.; Zhou, X. Z.; Ye, F.; He, Q. Y.; Chen, G. C. K.; Soo,J.; Boey, F.; Zhang, H.; Chen, P. Langmuir 2010, 26 (4), 2244.doi: 10.1021/la9048743
(36) Jain, A.; Zhang, X. M.; Pastorella, G.; Connolly, J. O.; Barry,N.;Woolley, R.; Krishnamurthy, S.; Marsili, E.Bioelectrochemistry 2012, 87 (Suppl. 1), 28.
(37) Qiao, Y.; Bao, S. J.; Li, C. M.; Cui, X. Q.; Lu, Z. S.; Guo, J. ACSNano 2008, 2 (1), 113. doi: 10.1021/nn700102s
(38) Zuo, X.; He, S.; Li, D.; Peng, C.; Huang, Q.; Song, S.; Fan, C.Langmuir 2010, 26 (3), 1936. doi: 10.1021/la902496u
(39) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin.2012, 28 (11), 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28 (11), 2745.] doi: 10.3866/PKU.WHXB201208221
(40) Lai, L. F.; Potts, J. R.; Zhan, D.;Wang, L.; Poh, C. K.; Tang, C.H.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. EnergyEnviron. Sci. 2012, 5 (7), 7936. doi: 10.1039/c2ee21802j
(41) Liu, Q.; Zhang, H. Y.; Zhong, H.W.; Zhang, S. M.; Chen, S. L.Electrochim. Acta 2012, 81 (1), 313.
(42) Wen, Q.; Liu, Z. M.; Chen, Y.; Li, K. F.; Zhu, N. Z. ActaPhys. -Chim. Sin. 2008, 24 (6), 1063. [温青, 刘智敏,陈野, 李凯峰, 朱宁正. 物理化学学报, 2008, 24 (6), 1063.]doi: 10.3866/PKU.WHXB20080626
(43) Wang,W. L.; Ma, Z. F. Acta Phys. -Chim. Sin. 2012, 28 (12),2879. [王万丽, 马紫峰. 物理化学学报, 2012, 28 (12), 2879.]doi: 10.3866/PKU.WHXB201209252
(44) Zhang, L. X.; Liu, C. S.; Zhuang, L.; Li,W. S.; Zhou, S. G.Biosens. Bioelectron. 2009, 24 (9), 2825. doi: 10.1016/j.bios.2009.02.010
(45) Liang, Y. Y.; Li, Y. G.;Wang, H. L.; Zhou, J. G.;Wang, J.;Regier, T.; Dai, H. J. Nat. Mater. 2011, 10 (10), 780. doi: 10.1038/nmat3087
(46) Yong, Y. C.; Dong, X. C.; Mary, B. C. P.; Song, H.; Chen, P.ACS Nano 2012, 6 (3), 2394. doi: 10.1021/nn204656d
(47) Pirbadian, S.; EI-Naggar, M. Y. Phys. Chem. Chem. Phys. 2012,14 (40), 13802. doi: 10.1039/c2cp41185g
(48) Cheng, J. S.; Du, J.; Zhu,W. J. Carbohyd. Polym. 2012, 88 (1),61. doi: 10.1016/j.carbpol.2011.11.065
(49) Huang, L. P.; Regan, J. M.; Quan, X. Bioresour. Technol. 2011,102 (1), 316. doi: 10.1016/j.biortech.2010.06.096
(50) Liu, H.; Grot, S.; Logan, B. E. Environ. Sci. Technol. 2005, 39 (11), 4317. doi: 10.1021/es050244p
(51) Rozendal, R. A.; Hamelers, H. V. M.; Euverink, G. J.W.; Metz,S. J.; Buisman, C. J. N. Int. J. Hydrog. Energy 2006, 31 (12),1632. doi: 10.1016/j.ijhydene.2005.12.006
(52) Logan, B. E.; Call, D.; Cheng, S.; Hamelers, H. V. M.; Sleutels,T. J. A.; Jeremiasse, A.W.; Rozendal, R. A. Environ. Sci.Technol. 2008, 42 (23), 8630. doi: 10.1021/es801553z
(53) Wang, L. Y.; Chen, Y. G.; Huang, Q.; Feng, Y. Y.; Zhu, S. M.;Shen, S. B. J. Chem. Technol. Biotechnol. 2012, 87 (8), 1150.doi: 10.1002/jctb.v87.8
(54) Zhang, Y. M.; Merrill, M. D.; Logan, B. E. Int. J. Hydrog.Energy 2010, 35 (21), 12020. doi: 10.1016/j.ijhydene.2010.08.064
(55) Selembo, P. A.; Merrill, M. D.; Logan, B. E. Int. J. Hydrog.Energy 2010, 35 (2), 428. doi: 10.1016/j.ijhydene.2009.11.014
(56) Hu, H.; Fan, Y.; Liu, H. Int. J. Hydrog. Energy 2010, 35 (8),3227. doi: 10.1016/j.ijhydene.2010.01.131
(57) Tokash, J. C.; Logan, B. E. Int. J. Hydrog. Energy 2011, 36 (16),9439. doi: 10.1016/j.ijhydene.2011.05.080
(58) Zhang, T.; Nie, H.; Bain, T. S.; Lu, H.; Cui, M.; Snoeyenbos-West, O. L.; Franks, A. E.; Nevin, K. P.; Russell, T. P.; Lovley,D. R. Energy Environ. Sci. 2013, 6 (1), 217. doi: 10.1039/c2ee23350a
(59) Logan, B. E. ChemSusChem 2012, 5 (6), 988. doi: 10.1002/cssc.v5.6

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. Chim. Sin., 2018, 34(1): 36-48.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[4] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[5] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[6] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[7] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[8] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[9] ZHAO Feng-Ming, WEN Gang, KONG Li-Yao, CHU You-Qun, MA Chun-An. Structure Characteristic of Titanium Nitride Nanowires and Its Electrode Processes for V(II)/V(III) Redox Couple[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1181-1188.
[10] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[11] ZHAO Li-Ping, MENG Wei-Shuai, WANG Hong-Yu, QI Li. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. Chim. Sin., 2017, 33(4): 787-794.
[12] XIA Rui, WANG Shi-Mao, DONG Wei-Wei, FANG Xiao-Dong. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2017, 33(4): 670-690.
[13] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[14] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[15] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.