Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (06): 1173-1182    DOI: 10.3866/PKU.WHXB201303153
THERMODYNAMICS, KINETICS, AND STRUCTURAL CHEMISTRY     
Site-Preference of Uracil and Thymine Hydrogen Bonding to Quercetin
WANG Chang-Sheng, LIU Peng, YU Nan
School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning Province, P. R. China
Download:   PDF(1319KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Exploring the binding features between small drug molecules and biomolecules is particularly important because it can provide valuable information for understanding the interaction mechanism and therefore rationally designing, modifying and screening of new drugs. In this paper, the site-preference of the nucleic acid bases uracil and thymine hydrogen bonding to the small medical molecule quercetin is investigated using the density functional theory method. Thirty stable hydrogen-bonded complexes were located at the B3LYP/6-31G(d) level of theory. The binding energies for these complexes were further evaluated at the B3LYP/6-311++G(3df,2p) level of theory with the basis set superposition error corrections. The results indicate that quercetin can interact with uracil or thymine through five binding sites, which herein we refer to as Site qu1, Site qu2, Site qu3, Site qu4, and Site qu5, and uracil (or thymine) can interact with quercetin through three binding sites, which herein we refer to as Site u1, Site u2, and Site u3 (or Site t1, Site t2, and Site t3). We found that once the binding site of quercetin is fixed, the hydrogen bonds formed through uracil Site u1 and thymine Site t1 are the strongest, while those formed through uracil Site u2 and thymine Site t2 are the weakest. When the binding site of uracil or thymine is fixed, the hydrogen bonds formed through the quercetin Site qu1 are the strongest, followed by those formed through quercetin Site qu5, while those formed through quercetin Site qu3 are the weakest. Atoms in molecules (AIM) and natural bond orbital (NBO) analyses were also carried out to explore the interaction nature of these hydrogen-bonded complexes.



Key wordsQuercetin      Uracil      Thymine      Hydrogen bond      Binding energy      Natural bond orbital analysis      Atoms in molecules analysis     
Received: 28 December 2012      Published: 15 March 2013
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (20973088, 21173109, 21133005), Specialized Research Fund for the Doctoral Program of Higher Education of China (20102136110001), and Program for Liaoning Excellent Talents in University, China (LR2012037).

Cite this article:

WANG Chang-Sheng, LIU Peng, YU Nan. Site-Preference of Uracil and Thymine Hydrogen Bonding to Quercetin. Acta Phys. Chim. Sin., 2013, 29(06): 1173-1182.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201303153     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I06/1173

(1) Trouillas, P.; Marsal, P.; Siri, D.; Lazzaroni, R.; Duroux, J. L.Food Chem. 2006, 97, 679. doi: 10.1016/j.foodchem.2005.05.042
(2) Lespade, L.; Bercion, S. J. Phys. Chem. B 2010, 114, 921. doi: 10.1021/jp9041809
(3) Guzzo, M. R.; Uemi, M.; Donate, P. M.; Nikolaou, S.; Machado,A. E. H.; Okano, L. T. J. Phys. Chem. A 2006, 110, 10545. doi: 10.1021/jp0613337
(4) Chakraborty, S.; Biswas, P. K. J. Phys. Chem. A 2012, 116,8775. doi: 10.1021/jp303543z
(5) Estévez, L.; Mosquera, R. A. J. Phys. Chem. A 2007, 111,11100. doi: 10.1021/jp074941a
(6) Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Theor.Chem. Acc. 2004, 111, 210. doi: 10.1007/s00214-003-0544-1
(7) Lee, S.; Shin, S. Y.; Lee, Y.; Park, Y.; Kim, B. G.; Ahn, J. H.;Chong, Y.; Lee, Y. H.; Lim, Y. Bioorg. Med. Chem. Lett. 2011,21, 3866. doi: 10.1016/j.bmcl.2011.05.043
(8) Kang, J.W.; Zhuo, L.; Lu, X. Q.; Liu, H. D.; Zhang, M.;Wu, H.X. J. Inorg. Biochem. 2004, 98, 79. doi: 10.1016/j.jinorgbio.2003.08.015
(9) Bhuva, H. A.; Kini, S. G. J. Mol. Graph. Model. 2010, 29, 32.doi: 10.1016/j.jmgm.2010.04.003
(10) Zhang, M.; Lv, Q. L.; Yue, N. N.;Wang, H. Y. Spectrochim.Acta A 2009, 72, 572. doi: 10.1016/j.saa.2008.10.045
(11) Cornard, J. P.; Merlin, J. C. J. Mol. Struct. 2003, 651-653, 381.
(12) Mukai, K.; Oka,W.;Watanabe, K.; Egawa, Y.; Nagaoka, S. I.J. Phys. Chem. A 1997, 101, 3746. doi: 10.1021/jp9706745
(13) Ni, Y. N.; Du, S.; Kokot, S. Anal. Chim. Acta 2007, 584, 19.doi: 10.1016/j.aca.2006.11.006
(14) Ren, J.; Meng, S.; Lekka, C. E.; Kaxiras, E. J. Phys. Chem. B2008, 112, 1845. doi: 10.1021/jp076881e
(15) Leopoldini, M.; Russo, N.; Chiodo, S.; Toscano, M. J. Agric.Food Chem. 2006, 54, 6343. doi: 10.1021/jf060986h
(16) Lekka, C. E.; Ren, J.; Meng, S.; Kaxiras, E. J. Phys. Chem. B2009, 113, 6478. doi: 10.1021/jp807948z
(17) Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. J. Phys.Chem. A 2004, 108, 4916. doi: 10.1021/jp037247d
(18) Lemańska, K.; Szymusiak, H.; Tyrakowska, B.; Zieliński, R.;Soffers, A. E. M. F.; Rietjens, I. M. C. M. Free Raobc. Med.2001, 7, 869.
(19) Plaper, A.; Golob, M.; Hafner, I.; Oblak, M.; Šolmajer, T.;Jerala, R. Biochem. Biophys. Res. Commun. 2003, 306, 530.doi: 10.1016/S0006-291X(03)01006-4
(20) Solimani, R. Biochim. Biophys. Acta 1997, 1336, 281. doi: 10.1016/S0304-4165(97)00038-X
(21) Zhang, C. S.; Lai, L. H. Acta Phys. -Chim. Sin. 2012, 28 (10),2363. [张长胜, 来鲁华. 物理化学学报, 2012, 28 (10), 2363.]doi: 10.3866/PKU.WHXB201209172
(22) Huang, Y. Y.; Yang, X. F.; Li, H. T.; Ji, X. F.; Cheng, H. L.;Zhao, Y. J.; Guo, D. C.; Li, L.; Liu, S. Y. Acta Phys. -Chim. Sin.2012, 28 (10), 2390. [黄阳玉, 阳秀凤, 李昊田, 纪晓峰, 程洪礼, 赵蕴杰, 郭大川, 李林, 刘士勇. 物理化学学报, 2012, 28 (10), 2390.] doi: 10.3866/PKU.WHXB201209111
(23) Zhang, M.; Zheng, Y. P.; Jiang, X. N.;Wang, C. S. ActaPhys. -Chim. Sin. 2010, 26 (3), 735. [张敏, 郑艳萍, 姜笑楠, 王长生. 物理化学学报, 2010, 26 (3), 735.] doi: 10.3866/PKU.WHXB20100235
(24) Liu, D. J.;Wang, C. S. Acta Phys. -Chim. Sin. 2012, 28 (12),2809. [刘冬佳, 王长生. 物理化学学报, 2012, 28 (12), 2809.]doi: 10.3866/PKU.WHXB201209263
(25) Dong, H.; Hua,W. J.; Li, S. H. J. Phys. Chem. A 2007, 111,2941. doi: 10.1021/jp0709860
(26) Jiang, X. N.;Wang, C. S. Sci. China Ser. Chem. 2010, 8, 1754.
(27) Li, Y.;Wang, C. S. Sci. China Ser. Chem. 2011, 54 (11), 1759.doi: 10.1007/s11426-011-4411-y
(28) Kobko, R.; Dannenberg, J. J. J. Phys. Chem. A 2003, 107,10389. doi: 10.1021/jp0365209
(29) Wu, Y. D.; Zhao, Y. L. J. Am. Chem. Soc. 2001, 123, 5313.doi: 10.1021/ja003482n
(30) Frish, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gassian 03,Revision D.01; Gaussian Inc.: Pittsburgh, PA, 2003.
(31) Biegler, K. F.; Schonbohm, J.; Bayles, D. J. Comput. Chem.2001, 22, 545.
(32) Yang, Y. J. Phys. Chem. A 2012, 116, 10150. doi: 10.1021/jp304420c
(33) Yang, Y. J. Phys. Chem. A 2011, 115, 9043. doi: 10.1021/jp204531e
(34) Zhao, G. J.; Liu, J. Y.; Zhou, L. C.; Han, K. L. J. Phys. Chem. B2007, 111, 8940.
(35) Zhao, G. J.; Han, K. L. Accounts Chem. Res. 2012, 45, 404. doi: 10.1021/ar200135h

[1] JIANG Xiaoyu, WU Wei, MO Yirong. Strength of Intramolecular Hydrogen Bonds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 278-285.
[2] GUO Rui, ZHANG Jialin, ZHAO Songtao, YU Xiaojiang, ZHONG Shu, SUN Shuo, LI Zhenyu, CHEN Wei. LT-STM Investigation of the Self-Assembled F16CuPc-Corannulene Binary System on Ag(111) and Grap[J]. Acta Phys. Chim. Sin., 2017, 33(3): 627-632.
[3] WANG Li, SHI He-Xia, WANG Wen-Yuan, SHI Hong, SHAO Xiang. Identifying the Hydrogen Bonding Patterns of Melamine and Melem Self-Assemblies on Au(111) Surface[J]. Acta Phys. Chim. Sin., 2017, 33(2): 393-398.
[4] SUN Yi-Ran, YU Fei, MA Jie. Research Progress of Nanoconfined Water[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2173-2183.
[5] JIN Ying-Chun, ZHENG Xu-Ming. UV Absorption and Resonance Raman Spectra of 2,4-Dithiouracil[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1989-1997.
[6] LIU Shan-Shan, JI Shan, CHEN Qi-Bin, PENG Chang-Jun, LIU Hong-Lai. Surface Patterning and Force-Induced Reversible Structural Transformation of a PVP-Chol Supramolecular Polymer Brush[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2318-2326.
[7] WANG Yun-He, QIN Yuan, YAO Man, WANG Xu-Dong, LI Shu-Ying, WANG Dong, CHEN Ting. Molecular Dynamics Simulation of a Chiral Self-Assembled Structure of a BIC and HA System on a HOPG Surface Driven by Hydrogen Bonds[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2255-2263.
[8] WU Shao-Gui, FENG Dan. Free Energy Calculation for Base Pair Dissociation in a DNA Duplex[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1282-1288.
[9] HU Ai-Bin, PAN Zhi-Quan, CHENG Qing-Rong, ZHOU Hong. Experimental and Theoretical Evidence for Supramolecular Self-Assembly and Hydrogen Bonding between Squaric Acid and 2,6-Bis(2-benzimidazolyl)pyridine[J]. Acta Phys. Chim. Sin., 2016, 32(3): 665-670.
[10] WANG Su-Min, ZHAO Rong-Na, WANG Qi-Guan, GUO Hao, LI Jin-Hua, ZHANG Wen-Hui. Ureidopyrimidinone Quadruple Hydrogen-Bonded Ferrocene Dimer: Control of Electronic Communication[J]. Acta Phys. Chim. Sin., 2016, 32(3): 611-616.
[11] ZHOU Yu, XU Jing, WANG Nan-Nan, YU Zhi-Wu. Excess Spectroscopy: Concept and Applications[J]. Acta Phys. Chim. Sin., 2016, 32(1): 239-248.
[12] ZHENG Dong, YUAN Xiang-Ai, MA Jing. Rationalization of pH-Dependent Absorption Spectrum of o-Methyl Red in Aqueous Solutions: TD-DFT Calculation and Experiment Study[J]. Acta Phys. Chim. Sin., 2016, 32(1): 290-300.
[13] WU Shao-Gui, GAO Xiao-Tong, LI Quan, LIAO Jie, XU Cheng-Gang. F1-ATPase Stabilizes and Positions Adenosine Triphosphate Revealed by Molecular Dynamics Simulations[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1803-1809.
[14] ZHANG Qiang, CHENG Cheng, ZHANG Xia, ZHAO Dong-Xia. Jump Rotational Mechanism of Ammonium Ion in Aqueous Solutions[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1461-1467.
[15] HUA Shu-Gui, JIN Hao, OUYANG Yong-Zhong. Contribution of Non-Covalent Interactions to the Gas-Phase Stability of the Double-Helix of B-DNA: A Density Functional Theory Study with GEBF Approach[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1309-1314.