Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (06): 1247-1252    DOI: 10.3866/PKU.WHXB201303211
Synthesis and Electrochemical Performance of Li4Ti5O12/CMK-3 Nanocomposite Negative Electrode Materials for Lithium-Ion Batteries
WU Hong-Bin1, ZHANG Ying1, YUAN Cong-Li1, WEI Xiao-Pei1, YIN Jin-Ling1, WANG Gui-Ling1, CAO Dian-Xue1, ZHANG Yi-Ming2, YANG Bao-Feng2, SHE Pei-liang2
1 Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China;
2 Shuangdeng Institute of Science and Techonology, Nanjing, 211000, P. R. China
Download:   PDF(2656KB) Export: BibTeX | EndNote (RIS)      


The composite of ordered mesoporous carbon (CMK-3) and Li4Ti5O12 (Li4Ti5O12/CMK-3) was prepared by the wet impregnation of CMK-3 with LiNO3 and Ti(OC4H9)4 solution followed by calcination. Its morphology and structure were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The content of Li4Ti5O12 in the mesoporous nanocomposite was determined by thermogravimetric analysis. Its electrochemical performance as the negative electrode material of lithium-ion batteries was investigated by galvanostatic charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results show that Li4Ti5O12 is formed inside the mesopore channels of CMK-3 and some particles are located on the surface of CMK-3. The composite shows significantly greater high-rate performance than commercial Li4Ti5O12. The specific capacity of Li4Ti5O12 in the composite is higher than Li4Ti5O12 without CMK-3 (117.8 mAh·g-1 at 1C rate), and its stabilized specific capacity reached 160, 143, and 131 mAh·g-1 at 0.5C, 1C, and 5C charge-discharge rates, respectively, with a columbic efficiency of nearly 100%. The capacity loss after 100 cycles at 5C rate was less than 0.62%. This result clearly indicates that CMK-3 improves the high rate performance of Li4Ti5O12, likely by reducing the particle size of Li4Ti5O12 and increasing its electronic conductivity owing to the unique structure and good electronic conduction nature of CMK-3.

Key wordsOrdered mesoporous carbon      Lithium titanate oxide      Composite      Lithium-ion battery      Negative electrode material     
Received: 08 January 2013      Published: 21 March 2013
MSC2000:  O646  

The project was supported by Harbin Science and Technology Innovation Fund for Excellent Academic Leaders, China (2012RFXXG103), Fundamental Research Funds for the Central Universities, China (HEUCFT1205), and Science and Technology Support Program of Jiangsu Province, China (BE2012152).

Cite this article:

WU Hong-Bin, ZHANG Ying, YUAN Cong-Li, WEI Xiao-Pei, YIN Jin-Ling, WANG Gui-Ling, CAO Dian-Xue, ZHANG Yi-Ming, YANG Bao-Feng, SHE Pei-liang. Synthesis and Electrochemical Performance of Li4Ti5O12/CMK-3 Nanocomposite Negative Electrode Materials for Lithium-Ion Batteries. Acta Phys. Chim. Sin., 2013, 29(06): 1247-1252.

URL:     OR

(1) Xiang, H. F.; Zhang, X.; Jin, Q. Y.; Zhang, C. P.; Chen, C. H.;Ge, X.W. J. Power Sources 2008, 183, 355. doi: 10.1016/j.jpowsour.2008.04.091
(2) Koga, C.;Wada, S.; Nakayama, M. Electrochim. Acta 2010, 55,2561. doi: 10.1016/j.electacta.2009.12.034
(3) Dedryvère, R.; Foix, D.; Franger, S.; Patoux, S.; Daniel, L.;Gonbeau, D. J. Phys. Chem. C 2010, 14, 10999.
(4) Capsoni, D.; Bini, M.; Massarotti, V.; Mustarelli, P.; Ferrari, S.;Chiodelli, G.; Mozzati, M. C.; Galinetto, P. J. Phys. Chem. C2009, 113, 19664. doi: 10.1021/jp906894v
(5) Lee, S. C.; Lee, S. M.; Lee, J.W.; Lee, J. B.; Lee, S. M.; Han, S.S.; Lee, H. C.; Kim, H. J. J. Phys. Chem. C 2009, 113, 18420.doi: 10.1021/jp905114c
(6) Yoshikawa, D.; Kadoma, Y.; Kim, J. M.; Ui, K.; Kumagai, N.;Kitamura, N.; Idemoto Y. Electrochim. Acta 2010, 55, 1872.doi: 10.1016/j.electacta.2009.10.082
(7) Rahman, M. M.;Wang, J. Z.; Hassan, M. F.; Chou, S.;Wexler,D.; Liu, H. K. J. Power Sources 2010, 195, 4297. doi: 10.1016/j.jpowsour.2010.01.073
(8) Stournara, M. E.; Shenoy, V. B. J. Power Sources 2011, 196,5697. doi: 10.1016/j.jpowsour.2011.02.024
(9) Ju, S. H.; Kang, Y. C. J. Power Sources 2009, 189, 185.doi: 10.1016/j.jpowsour.2008.09.107
(10) Prakash, A. S.; Manikandan, P.; Ramesha, K.; Sathiya, M.;Tarascon, J. M.; Shukla, A. K. Chem. Mater. 2010, 22, 2857.doi: 10.1021/cm100071z
(11) Huang, S.;Wen, Z.; Zhu, X.; Lin, Z. J. Power Sources 2007,165, 408. doi: 10.1016/j.jpowsour.2006.12.010
(12) Deng, J.; Lu, Z.; Belharouak, I.; Amine, K.; Chung, C. Y.J. Power Sources 2009, 193, 816. doi: 10.1016/j.jpowsour.2009.03.074
(13) He, Y. B.; Ning, F.; Li, B.; Song, Q. S.; Lv,W.; Du, H.; Zhai, D.;Su, F.; Yang, Q. H.; Kang, F. J. Power Sources 2012, 202, 253.doi: 10.1016/j.jpowsour.2011.11.037
(14) Yuan, T.; Yu, X.; Cai, R.; Zhou, Y.; Shao, Z. J. Power Sources2010, 195, 4997. doi: 10.1016/j.jpowsour.2010.02.020
(15) Wang, G. J.; Gao, J.; Fu, L. J.; Zhao, N. H.;Wu,Y. P.; Takamura,T. J. Power Sources 2007, 174, 1109. doi: 10.1016/j.jpowsour.2007.06.107
(16) Lin, Z.; Hu, X.; Huai, Y.; Liu, L.; Deng, Z.; Suo, J. Solid State Ionics 2010, 181, 412. doi: 10.1016/j.ssi.2010.01.019
(17) Yuan, T.; Cai, R.; Ran, R.; Zhou, Y.; Shao, Z. J. Alloy. Compd.2010, 505, 367. doi: 10.1016/j.jallcom.2010.04.253
(18) Jhan, Y. R.; Lin, C. Y.; Duh, J. G. Mater. Lett. 2011, 65, 2502.doi: 10.1016/j.matlet.2011.04.060
(19) Yi, T. F.; Jiang, L. J.; Shu, J.; Yue, C. B.; Zhu, R. S.; Qiao, H. B.J. Phys. Chem. Solids 2010, 71, 1236. doi: 10.1016/j.jpcs.2010.05.001
(20) Venkateswarlu, M.; Chen, C. H.; Do, J. S.; Lin, C.W.; Chou, T.C.; Hwang, B. J. J. Power Sources 2005, 146, 204. doi: 10.1016/j.jpowsour.2005.03.016
(21) Jung, H. G.; Kim, J.; Scrosati, B.; Sun, Y. K. J. Power Sources2011, 196, 7763. doi: 10.1016/j.jpowsour.2011.04.019
(22) Su, L.W.; Jing, Y.; Zhou, Z. Nanoscale 2011, 3, 3967.doi: 10.1039/c1nr10550g
(23) Wang, G.; Liu, H.; Liu, J.; Qiao, S.; Lu, G. M.; Munroe, P.; Ahn,H. Adv. Mater. 2010, 22, 4944. doi: 10.1002/adma.v22.44
(24) Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater 2009, 8, 500.doi: 10.1038/nmat2460
(25) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.;Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712.doi: 10.1021/ja002261e
(26) Tian, B.; Xiang, H.; Zhang, L.; Li, Z.;Wang, H. Electrochim. Acta 2010, 55, 5453. doi: 10.1016/j.electacta.2010.04.068
(27) Zhang, B.; Huang, Z. D.; Oh, S.W.; Kim, J. K. J. Power Sources2011, 196, 10692. doi: 10.1016/j.jpowsour.2011.08.114
(28) Zhou, X. L.; Huang, R. A.;Wu, Z. C.; Yang, B.; Dai, Y. N. Acta Phys. -Chim. Sin. 2010, 26 (12), 3187. [周晓玲, 黄瑞安, 吴肇聪, 杨斌, 戴永年. 物理化学学报, 2010, 26 (12), 3187.]doi: 10.3866/PKU.WHXB20101212
(29) He, Y. B.; Li, B. H.; Liu, M.; Zhang, C.; Lv,W.; Yang, C.; Li, J.;Du, H. D.; Zhang, B.; Yang, Q. H.; Kim, J. K.; Kang, F. Y.Scientific Reports 2012, 2, 913.

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[3] LI Guo-Min, ZHU Bao-Shun, LIANG Li-Ping, TIAN Yu-Ming, Lü Bao-Liang, WANG Lian-Cheng. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1715-1720.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[5] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[6] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[7] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[8] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[9] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[10] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[11] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[12] LI Jun-Tao, WU Jiao-Hong, ZHANG Tao, HUANG Ling. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Phys. Chim. Sin., 2017, 33(5): 968-975.
[13] ZHAO Li-Ping, MENG Wei-Shuai, WANG Hong-Yu, QI Li. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. Chim. Sin., 2017, 33(4): 787-794.
[14] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[15] FANG Min, WANG Zong-Yuan, LIU Chang-Jun. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(2): 435-440.