Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (06): 1327-1335    DOI: 10.3866/PKU.WHXB201303212
CATALYSIS AND SURFACE SCIENCE     
Surface Modification of CNTs and Improved Photocatalytic Activity of TiO2-CNTs Heterojunction
YANG Han-Pei, ZHANG Ying-Chao, FU Xiao-Fei, SONG Shuang-Shuang, WU Jun-Ming
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R.China
Download:   PDF(2117KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Carbon nanotubes (CNTs) have been ultrasonically treated with the mixed acid (H2SO4/HNO3, 3:1, volume ratio), embedding the active -COOH groups onto the surface of the CNTs. As a result, the acid-treated CNTs serve as chemical reactors for subsequent grafting of L-lysine or octadecylamine (ODA). It was revealed that L-lysine and ODA covalently bond to the surface of the oxidized CNTs through amidation of carboxylic acid groups (CNTs-COOH) and lysine or ODA via intermediate acyl chlorides (CNTs-COCl). The hydrophilic and lipophilic CNTs have high aquatic and ethanol solubility, and the solubility of the surface modified CNTs in water and ethanol were measured to be as high as 6.85 and 10.15 mg·mL-1, respectively. The surface nature of modified CNTs and the properties of TiO2-CNTs composite photocatalysts, which were prepared through sol-gel or low temperature hydrothermal synthesis, were investigated by Fourier transform infrared (FTIR), laser Raman, X-ray diffraction (XRD), Brunauer-Emmett-Teller N2 adsorption, transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS). Improved photocatalytic performance was observed for TiO2 coupled by hydrophilic or lipophilic CNT, which were obtained by low temperature hydrothermal and sol-gel synthesis, respectively, and it was revealed that there is an affinity between the photocatalytic performance of TiO2-CNTs hybrids and the dispersibility of CNTs. It is proposed that the improved photocatalytic activity of CNT-TiO2 compared with pure TiO2 photocatalysts can be mainly attributed to the homogeneous and dense dispersion of TiO2 on the modified CNTs and the intimate contact between TiO2 and CNTs, which results in dense heterojunctions at the interface of TiO2 and CNTs through the Ti-O-C structure.



Key wordsCarbon nanotubes      Surface modification      Solubility      TiO2      Photocatalytic degradation     
Received: 25 January 2013      Published: 21 March 2013
MSC2000:  O643  
Fund:  

The project was supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (20071256).

Cite this article:

YANG Han-Pei, ZHANG Ying-Chao, FU Xiao-Fei, SONG Shuang-Shuang, WU Jun-Ming. Surface Modification of CNTs and Improved Photocatalytic Activity of TiO2-CNTs Heterojunction. Acta Phys. -Chim. Sin., 2013, 29(06): 1327-1335.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201303212     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I06/1327

(1) Hu, L. B.; Hecht, D. S.; Gruner, G. Chem. Rev. 2010, 110, 5790.doi: 10.1021/cr9002962
(2) Wu, Y. C.; Liu, X. L.; Ye, M.; Xie, T.; Huang, X. M. Acta Phys. - Chim. Sin. 2008, 24, 97. [吴玉程, 刘晓璐, 叶敏, 解挺,黄新民. 物理化学学报, 2008, 24, 97.] doi: 10.3866/PKU.WHXB20080117
(3) Zhang, K.; Zhang, F.; Chen, M.; Oh,W. Ultrason. Sonochem.2011, 18, 765. doi: 10.1016/j.ultsonch.2010.11.008
(4) Barkauskasa, J.; Stankeviciene, I.; Selskis, A. Sep. Purif. Technol. 2010, 71, 331. doi: 10.1016/j.seppur.2009.12.019
(5) Stobinski, L.; Lesiak, B.; Kövér, L. J. Alloy. Compd. 2010, 501,77. doi: 10.1016/j.jallcom.2010.04.032
(6) Tian, R.;Wang, X.; Li, M.; Hu, H. Appl. Surf. Sci. 2008, 255,3294. doi: 10.1016/j.apsusc.2008.09.040
(7) Dyke, C. A.; Stewart, M. P.; Tour, J. M. J. Am. Chem. Soc. 2005,127, 4497. doi: 10.21/ja042828h
(8) Zeng, L.; Zhang, L.; Barron, A. R. Nano Lett. 2005, 5, 2001.doi: 10.1021/nl0514994
(9) Balasubramanian, K.; Burghard, M. Small 2005, 1, 180.
(10) Ye, Q.; Zhang, Y.; Li, M.; Shi, Y. Acta Phys. -Chim. Sin. 2012,28, 1223. [叶青, 张瑜, 李茗, 施耀. 物理化学学报,2012, 28, 1223.] doi: 10.3866/PKU.WHXB201202234
(11) Mugadza, T.; Nyokong, T. Electrochim. Acta 2010, 55, 2606.doi: 10.1016/j.electacta.2009.12.051
(12) Mugadza, T.; Nyokong, T. Synth. Met. 2010, 160, 2089.doi: 10.1016/j.synthmet.2010.07.036
(13) Wei, T.; Fan, Z.; Luo, G.;Wei, F. Mater. Lett. 2008, 62, 64.
(14) Chen, Y.; Zhang, Y. Q.; Zhang, T. H. Carbon 2006, 44, 37.doi: 10.1016/j.carbon.2005.07.011
(15) Mills, A.; Hunte, S. L. J. Photochem. Photobiol. A: Chem. 1997,108, l.
(16) Qiu,W.; Ren, C. J.; Gong, M. C.; Hou, Y. Z.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2011, 27, 1487. [仇伟, 任成军, 龚茂初,侯云泽, 陈耀强. 物理化学学报, 2011, 27, 1487.] doi: 10.3866/PKU.WHXB20110621
(17) Wang, H.;Wang, H. L.; Jiang,W. F.; Li, Z. Q. Water Res. 2009,43, 204. doi: 10.1016/j.watres.2008.10.003
(18) Wang,W.; Serp, P.; Kalck, P.; Faria, J. L. Appl. Catal. B: Environ. 2005, 56, 305. doi: 10.1016/j.apcatb.2004.09.018
(19) Suzuki, Y.; Yoshikawa, S. J. Mater. Res. 2004, 19, 982.doi: 10.1557/JMR.2004.0128
(20) Yang, H. P.; Shi, Z. M.; Dai, K. J.; Duan, Y. P.;Wu, J. M. Acta Chim. Sin. 2011, 69, 536. [杨汉培, 石泽敏, 戴开静, 段云平,吴俊明. 化学学报, 2011, 69, 536.]
(21) Sun, J. H.; Qiao, L. P.; Sun, S. P.;Wang, G. L. J. Hazard Mater.2008, 155, 312. doi: 10.1016/j.jhazmat.2007.11.062
(22) Maiyalagan, T.; Viswanathan, B. Mater. Chem. Phys. 2005, 93,291. doi: 10.1016/j.matchemphys.2005.03.039
(23) Kim, S. D.; Kim, J.W.; Im, J. S. J. Fluorine Chem. 2007, 128,60. doi: 10.1016/j.jfluchem.2006.10.010
(24) Osorio, A. G.; Silveira, I. C. L.; Bueno, V. L. Appl. Surf. Sci.2008, 255, 2485. doi: 10.1016/j.apsusc.2008.07.144
(25) Yang, Y. S.; Qi, G. R.; Qian, J.W.; Yang, S. L. J. Appl. Polym. Sci. 1998, 68, 665.
(26) Hannus, I.; Kollár, T.; Kónya, Z.; Kiricsi, I. Vib. Spectrosc.2000, 22, 29. doi: 10.1016/S0924-2031(99)00059-4
(27) Ba, C. Y.; Economy, J. J. Memb. Sci. 2010, 363, 140.doi: 10.1016/j.memsci.2010.07.019
(28) Peter, J.; Khalyavina, A.; Kǐí?, J.; Bleha, M. Eur. Polym. J.2009, 45, 1716. doi: 10.1016/j.eurpolymj.2009.03.003
(29) Svatos, A.; Attygalle, A. B. Anal. Chem. 1997, 69, 1827.doi: 10.1021/ac960890u
(30) Xu, M.; Huang, Q.; Chen, Q.; Guo, P.; Sun, Z. Chem. Phys. Lett.2003, 375, 598. doi: 10.1016/S0009-2614(03)00923-0
(31) Okabayashi, H.; Etori, H.; Yamada, Y.; Taga, K.; Yoshida, T.Vib. Spectrosc. 1996, 13, 51. doi: 10.1016/0924-2031(96)00034-3
(32) Venkataraman, N. V.; Barman, S.; Vasudevan, S.; Seshadri, R.Chem. Phys. Lett. 2002, 358, 139. doi: 10.1016/S0009-2614(02)00604-8
(33) Georgiev, A.; Karamancheva, I.; Dimov, D. J. Mol. Struct. 2008,888, 214. doi: 10.1016/j.molstruc.2007.12.006
(34) Zhao, X. A.; Ong, C.W.; Tsang, Y. C. Appl. Phys. Lett. 1995,66, 2652. doi: 10.1063/1.113114
(35) Choi, S.; Park, K. H.; Lee, S.; Koh, K. H. J. Appl. Phys. 2002,92, 4007. doi: 10.1063/1.1499233
(36) Hou, P. X.; Liu, C.; Cheng, H. M. Carbon 2008, 46, 2003.doi: 10.1016/j.carbon.2008.09.009
(37) Fernando, K. A. S.; Lin, Y.; Sun, Y. P. Langmuir 2004, 20, 4777.doi: 10.1021/la036217z
(38) Wang,W. D.; Serp, P.; Kalck, P.; Faria, J. L. J. Molec. Catal. A2005, 235, 194. doi: 10.1016/j.molcata.2005.02.027
(39) Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures;Academic Press: New York, 1967; pp 132-136.
(40) Lee, S.W.; Sigmund,W. M. Chem. Commun. 2003, 6, 780.
(41) Yu, Y.; Yu, J. C.; Yu, J. G.; Kwok, Y. C.; Che, Y. K.; Zhao, J. C.;Ding, L.; Ge,W. K.;Wong, P. K. Appl. Catal. A: Gen. 2005,289, 186. doi: 10.1016/j.apcata.2005.04.057
(42) Yu, H.; Quan, X.; Chen, S.; Zhao, H. J. Phys. Chem. C 2007,111, 12987. doi: 10.1021/jp0728454
(43) Akhavan, O.; Abdolahad, M.; Abdi, Y.; Mohajerzadeh, S.Carbon 2009, 47, 3280. doi: 10.1016/j.carbon.2009.07.046
(44) Tian, L. H.; Ye, L. Q.; Deng, K. J.; Zan, J. Solid State Chem.2011, 184, 1465. doi: 10.1016/j.jssc.2011.04.014
(45) Chen, L. C.; Ho, Y. C.; Guo,W. S.; Huang, C. M.; Pan, T. C.Electrochimica Acta 2009, 54, 3884. doi: 10.1016/j.electacta.2009.02.001
(46) Nahar, M. S.; Zhang, J.; Hasegawa, K. Mater. Sci. Semicond. Process 2009, 12, 168. doi: 10.1016/j.mssp.2009.09.011
(47) Yang, J.; Bai, H.; Tan, X.; Lian, J. Appl. Sur. Sci. 2006, 253,1988. doi: 10.1016/j.apsusc.2006.03.078
(48) Song, Z.; Hrbek, J.; Osgood, R. Nano Lett. 2005, 5, 1327.doi: 10.1021/nl0505703
(49) Jitianu, A.; Cacciaguerra, T.; Benoit, R.; Delpeux, S.; Beguin,F.; Bonnamy S. Carbon 2004, 42, 1147.
(50) Shanmugharaj, A. M.; Bae, J. H.; Lee, K. Y.; Noh,W. H.Compos. Sci. Technol. 2007, 67, 1813. doi: 10.1016/j.compscitech.2006.10.021
(51) Kim, S. D.; Kim, J.W.; Im, J. S.; Kim, Y. H.; Lee, Y. S.J. Fluorine Chem. 2007, 128, 60. doi: 10.1016/j.jfluchem.2006.10.010

[1] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.
[2] Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 414-423.
[3] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[4] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[5] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[6] Xue-Hui HUANG,Xiao-Hui SHANG,Peng-Ju NIU. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.
[7] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.
[8] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[9] Xiao-Ping GAO,Zhang-Long GUO,Ya-Nan ZHOU,Fang-Li JING,Wei CHU. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 602-610.
[10] Xiu-Mei WAN,Li WANG,Xiao-Qing GONG,Dan-Feng LU,Zhi-Mei QI. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2523-2531.
[11] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2284-2292.
[12] Hai LAN,Xi XIAO,Shan-Liang YUAN,Biao ZHANG,Gui-Lin ZHOU,Yi JIANG. MoFeOx-Supported Catalysts for the Catalytic Conversion of Glycerol to Allyl Alcohol without External Hydrogen Donors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2301-2309.
[13] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2029-2034.
[14] Ya-Yu HUANG,Qiu-Yan FANG,Jian-Zhang ZHOU,Dong-Ping ZHAN,Kang SHI,Zhong-Qun TIAN. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2042-2051.
[15] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.